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0. Introduction

Over the past few decades, the importance of the incompressible surface in

the study of 3-manifold topology has become apparent. In fact, nearly all of the

important outstanding conjectures in the �eld have been proved, for 3-manifolds

containing incompressible surfaces (see, e.g., [20],[22]). Faced with such success, it

becomes important to know just what 3-manifolds could contain an incompressible

surface.

Historically, the �rst 3-manifolds (with in�nite fundamental group) which were

shown to contain no incompressible surfaces were a certain collection of Seifert-

�bered spaces. Waldhausen [21], in the 1960's, showed that an incompressible sur-

face in a Seifert-�bered space is isotopic to one which is either vertical or horizontal.

This added structure puts a severe restriction on the existence of an incompressible

surface, and led to the discovery of these `small' Seifert-�bered spaces.

Now in recent years the essential lamination, a recently-de�ned hybrid of the in-

compressible surface and the codimension-one foliation without Reeb components,

has begun to show similar power in tackling problems in 3-manifold topology (see

[7]). It also has the added advantage of being (seemingly) far more widespread

than either of its `parents'; its more general nature makes it far easier to construct

in a wide variety of 3-manifolds (see, e.g., [6]). In light of these facts, it would be

interesting to know if there are any 3-manifolds which contain no essential lam-

inations, and only natural to look in the same place that Waldhausen found his

examples.
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In this paper we carry out such a program. We show that an essential lamina-

tion in a Seifert-�bered space satis�es a structure theorem similar to the one given

for surfaces by Waldhausen. Together with work of Eisenbud-Hirsch-Neumann

on the existence of horizontal foliations, this structure theorem allows us to show

that some of the `small' Seifert-�bered spaces above cannot contain any essential

laminations.

We also obtain, as a further application of the structure theorem, a result

which states that any codimension-one foliation with no compact leaves in a `small'

Seifert-�bered space is isotopic to a horizontal foliation; this completes (in some

sense) a group of results on isotoping foliations in Seifert-�bered spaces, which

began with Thurston's thesis.

The author wishes to thank Allen Hatcher for his many comments and sugges-

tions during the course of this work, in his capacity as the author's thesis advisor.

We should also mention that Wilhelmina Claus has, using di�erent methods, ob-

tained similar results [3] in the direction of this paper.

1. The Main Results

For de�nitions and notations concerning essential laminations, see [7].

In this paper the word `lamination' will mean a lamination which is carried

by a branched surface; technically, therefore, a foliation F , for example, is not a

`lamination'. One must �rst split F along a �nite number of its leaves, as in [7].

Because we are largely interested in the existence of essential laminations, splitting

will cause no di�culty; the splitting of an essential lamination is essential.

For de�nitions and basic concepts regarding Seifert-�bered spaces, see [8] or

[16].
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Generalizing [21], we say that a lamination L �M is vertical, w.r.t. a Seifert-

�bering p:M!F if p�1(p(L))=L, i.e., L contains every circle �ber of M that it

meets; L is horizontal if it is transverse to the circle �bers of M at every point.

Now let M be a compact orientable Seifert-�bered space, with Seifert-�bering

� : M! F.

Theorem 1: Every essential lamination L in M contains a sublamination L0

which is isotopic to a vertical or horizontal lamination.

The proof of this theorem comprises the bulk of this paper.

Corollary 2: If a Seifert-�bered 3-manifold M contains an essential lamination,

then it contains a horizontal or vertical one.

Therefore, if we wish to show that a Seifert-�bered space contains no essential

laminations, it su�ces to show that it contains no horizontal or vertical ones.

It is well-known that M contains a vertical essential surface unless either F=S2

and M has �3 multiple �bers, or F=RP2 and M has �1 multiple �ber. Of these

cases the only one of interest is F=S2 with 3 multiple �bers; in the remaining cases

M is either reducible or has �nite fundamental group [7], so cannot contain an

essential lamination for well-understood reasons [7].

Proposition 3: There are no vertical essential laminations in a Seifert-�bered

space M with base S2 and 3 multiple �bers.

Proof: Suppose L is a vertical essential lamination. After splitting along some

leaves of L, we may assume that L misses the multiple �bers 
1; 
2; 
3 of M, and so

can be thought of as a (vertical) lamination in M0=MnN(
1[
2[
3)=F�S1, where

F is a pair of pants S2n3D2. Because L is vertical (and M0 has no multiple �bers),

�=p(L)�F is a (1-dimensional) lamination in F. Further, because L is essential in

M, it is easy to see that � is incompressible in F; we can think of F�M0 (by choosing
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a section of the (trivial) �bering of M0) and �=L\F, and then any compressing

or end-compressing disk for a leaf of � will be a compressing or end-compressing

disk for L in M, because L is vertical. But an easy Euler-characteristic calculation

like those in [2] or [7], using an incompressible train track carrying �, shows that

any incompressible lamination in the interior of a pair of pants must contain a

(@-parallel) compact loop 
. But then p�1
=T is a vertical torus in L�M, which

bounds a solid torus (one of the N(
i)), and hence is compressible, a contradiction.

Corollary 4: Every essential lamination L in a Seifert-�bered space M with

base S2 and 3 multiple �bers contains a horizontal sublamination.

Now it is easy to see that any horizontal lamination L can be completed to a

transverse foliation of M; L cuts the circle �bers of M into arcs, so M split along

L, MjL, is a collection of I-bundles, and these bundles can be foliated by surfaces

transverse to the I-�bers, completing L to a foliation of M. Because the I-�bers

are contained in the circle �bers of M, this foliation is everywhere transverse to

the circle �bers of M.

In [4] and [11] such foliations were studied, and criteria based on the nor-

mal Seifert invariants of M were given for determining their existence. More

precisely, suppose M is a Seifert-�bered space with normal Seifert invariant M=

�(0; 0; k; a1=b1; a2=b2; a3=b3) and suppose either

(a) k6=-1, -2, or

(b) k=-1, and (possibly after a permutation of the ai=bi) ai=bi � a0i=b
0

i > 0, for

some rational numbers a0i=b
0

i satisfying

a01=b
0

1 = 1 � (a02=b
0

2 + a03=(b
0

2(b
0

3 � 1)))

or
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(c) k=-2; then after replacing M= �(0; 0;�2; a1=b1; a2=b2; a3=b3) with

M= �(0; 0;�1; (b1 � a1)=b1; (b2 � a2)=b2; (b3 � a3)=b3) (by reversing the orien-

tation of M), apply the criterion (b).

Then M does not admit a transverse foliation.

In particular, M contains no essential laminations. Since it is well known that

Seifert-�bered spaces M as above with 1=b1 +1=b2+1=b3 < 1 have universal cover

R3 (see [16]), we have the following corollary.

Corollary 5: There exist Seifert-�bered spaces M with fM = R3 which contain

no essential laminations.

We now turn our attention to foliations without Reeb components of a Seifert-

�bered space M.

Proposition 6: If an essential laminationL with no compact leaves in a closed,

orientable Seifert-�bered space M contains a horizontal sublamination L0, then L

is isotopic to a horizontal lamination.

Proof: Since L0 is horizontal, MjL0 is a collection of I-bundles foliated by

subarcs of the circle �bers of M. Let N be a component of MjL0, an I-bundle over

some non-compact surface E, � : N! E, and consider L1 =L\N�N. Every leaf L

of L1 is �1-injective in N (since the composition �1(L)!�1(N)!�1(M) is injective).

Now let fCig be an exhaustion of E by compact, connected subsurfaces, i.e.,

[Ci =E, and let Ei = E n int(Ci). Because the leaves of L1 limit on leaves of L0

(in fact their limit set is contained in L0), which are horizontal, one can then see

that for some i, every leaf of L1 is horizontal over Ei. So to show L can be made

horizontal, it su�ces to show that L\��1(Ci) can be isotoped to be horizontal in

Ni = ��1(Ci), rel ��1@(Ci) =A. Note that Ni is a compact handlebody.
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We proceed by induction on the genus of Ni (see Figure 1). If genus=0, then Ci

is a disk, and Ni = Ci� I, with Ci� @I � L0, and L1 meeting @Ci� I horizontally.

Therefore L1 \Ni is a collection of taut disks, which can be pulled horizontal.

Figure 1: horizontal laminations

If genus> 0, then choose an essential arc � in Ci and look at the disk � = ��1�.

@� can be separated into four arcs, two contained in L0 and two transverse to L1.

By an isotopy of L1 we can remove any trivial loops of intersection L1 \�; then

L1 meets � in compact arcs. None of these arcs can have both endpoints in the

same arc of @�; the disk it cuts o� together with a (vertical) half-in�nite rectangle

going o� to in�nity in N would give an end-compressing disk for L.

So all of the arcs run from one side of � to the other; in particular, these arc

can be pulled taut w.r.t. the I-�bering of � from N. If we then split open Ni along

�, we get an I-bundle of smaller genus, with L1 meeting the @I-bundle horizontally,

and with horizontal complement in N. By induction, therefore, we can isotope L1

(rel L0) to be horizontal in N. Doing this for all of the components of MjL0, we

can isotope L to be horizontal in M.

Corollary 7: Every essential foliation with no compact leaves F in a Seifert-

�bered space M with base S2 and 3 multiple �bers is (C(0)-) isotopic to a transverse

foliation.

Proof: We can split F along a �nite collection of leaves to give an essential

lamination L carried by a branched surface. By the corollary above, L contains
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a horizontal sublamination. By the proposition (since L has no compact leaves)

L itself is a horizontal lamination. The I-bundles MjL then are �bered by arcs

in the circle �bers; crushing each �ber to a point retrieves F in M, and it is now

transverse to the �bers of M.

This result can be thought of as an extension and completion (in the C0-case)

of results of Thurston [19] and Levitt [12], Eisenbud-Hirsch-Neumann [4], and

Matsumoto [13]. Taken together these papers show that a C2-foliation with no

compact leaves, in any (closed) Seifert-�bered space other than the ones in the

corollary, can be C2-isotoped to a transverse one. The corollary says that a C2-

foliation in M with base S2 and 3 multiple �bers can be C0-isotoped to a transverse

one; it leaves open the question of whether such a foliation can be C2-isotoped

(the argument above cannot be adapted; at the very beginning, the splitting of

the foliation to obtain a branched surface destroys the transverse C2-structure).

It is worth noting that an extension in the other direction is not possible; there

exist C0-foliations of Seifert-�bered spaces, with no compact leaves, which contain

vertical sublaminations. Examples are easily constructed from vertical essential

laminations in F�S1, where F is a compact surface of genus greater than or equal

to 2.

2. Proof of the Theorem: Preliminaries

Every orientable Seifert-�bered 3-manifold M is the union of a (�nite) collection

of solid tori (with disjoint interiors) which meet along their boundaries. This view

can be obtained from the standard one. Consider the base surface F of the Seifert-

�bering; it is a compact surface. Choose a triangulation � of F, in general position

with respect to the collection of multiple points of the �bering, so that each 2-

simplex contains at most one multiple point. Then every 2-simplex �2
i has inverse

image ��1(�2
i ) = Mi a solid torus (it is an (orientable) Seifert-�bered space with
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base D2 and at most one multiple �ber), and these solid tori meet along the inverse

images of the 1-simplices of � , which meet each solid torus in its boundary.

The inverse images of the points of � (0) =the 0-skeleton of � form a �nite

collection S of regular �bers of M in the boundary of the solid tori (they in fact

constitute the points where three or more of the solid tori meet). These �bers will

be of central importance to us; we will call them the sentinel �bers of M.

If the lamination L is carried by a branched surface B, then possibly after

splitting along a �nite number of leaves, we may assume that @hN(B)�L. Then

N(B) split open along L, denoted N(B)jL, is a collection of I-bundles over compact

and non-compact surfaces (possibly with boundary). If we split B along the bundles

over compact surfaces (i.e., remove their interiors from N(B)), we obtain a (possibly

new) branched surface B, carrying L, which now has no such bundles in N(B)jL.

Such a branched surface will be called a branched surface having no compact

bundles w.r.t. L. Every lamination (up to splitting) is carried by such a branched

surface, except when it has a compact isolated leaf.

For a lamination L�M carried by a branched surface B having no compact

bundles w.r.t. L, and 
 a loop transverse to L (i.e., to B), we can de�ne a number

�, called a monogon number for L w.r.t. 
, in terms of the branched surface B, as

follows:

N(B) meets 
 in a collection of vertical �bers, and L\
 is contained in these

subarcs of 
; we let � = 1=2 of the smallest distance (along 
) from one of these

subarcs to another. It then follows that any two points of L\
 which are within �

of one another are contained in the same vertical �ber of N(B).

We also need to know something about how L meets typical surfaces S in the

Mi (that it meets transversely), i.e., (meridian) disks, annuli=��1(e1j ) � @Mi, and

tori=@Mi. Because L is essential, this is easy to categorize.
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�=L\S is a 1-dimensional lamination in the surface S. There can be no holon-

omy around a loop 
 of � which is trivial in S (see [15] for the notion of holonomy),

because 
 bounds a disk in L and there can be no holonomy around the boundary

of a disk. It follows by Reeb stability [17] that the collection �0 of trivial loops

and @-parallel arcs in � �S form a sublamination open and closed in �.

� n �0 �S can have no monogons; because L is transverse to S they would give

an end-compressing disk for L. An Euler-characteristic argument like that in [2]

implies (since �(S)�0) that � n �0 can be completed to a foliation of S.

If S=torus, facts from dynamical systems about foliations of the torus (see,

e.g., [9]) imply that there can be only 3 kinds of behavior in � n �0: either

(a) �n�0 contains no compact leaves; it then contains an irrational (measured)

sublamination, and all other leaves are parallel to this sublamination. In particular,

�n�0 can be isotoped to be transverse to the leaves of any foliation of S by compact

loops (since this is true of the completed foliation of S); or

(b) �n�0 contains compact leaves. The collection of compact leaves then forms

a (closed) sublamination of � n �0, and all other leaves lie in the annular regions

between the compact leaves, and are of either (1)`Reeb' type or (2) `Kronecker'

type (see Figures 2ab).

Figure 2: laminations in the 2-torus

If S=disk, then � n �0 = ; (you can't foliate a disk), so all of the leaves of

L\S are trivial loops and @-parallel arcs. If S=annulus, then by doubling S and
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� n �0 �S, and applying the above, we can conclude that either � n �0 consists of

parallel essential compact arcs, or � n �0 contains essential (vertical) loops, with

(possibly half-) Reeb or Kronecker leaves in between them.

a. Recognizing good laminations in a solid torus.

Let L be an essential lamination in the 3-manifold M, and let M0 be a solid

torus in M. By a small isotopy of L we can arrange that L is transverse to M0

(this amounts to making L transverse to @M0). Then L\M0=L0 is a lamination

in M0. This lamination is almost certain not to have �1-injective leaves. However,

this lack of �1-injectivity, basically, lives in the boundary @L0=L \ @M0, as the

following lemma shows:

Lemma 2.1: Let L, M0, and L0 be as above, with Mnint(M0) irreducible. If

every embedded loop 
0 in @L0 which is null-homotopic in M0 bounds a disk in

L0, then every leaf of L0 is �1-injective in M0.

Proof: Look at the collection � of loops in @L0=L0\@M0 which are trivial

in @M0. These loops, by hypothesis are trivial in the leaves of L0 which contain

them, and therefore bound (a collection T of) boundary-parallel disk leaves in

L0. By a Reeb Stability argument, this collection T forms an open and closed

set in L0, and so is a sublamination of L0, and so � is a sublamination of @L0.

� therefore consists of a �nite number of parallel families of trivial loops in @M0,

bounding parallel families of @-parallel disks in M0. We can then by an isotopy of

L (choosing an outermost family of disks (meaning an innermost family of loops)

and working in) remove these families of disks from L0. Since T is closed in L0,

nothing else is changed, so after the isotopy L0 has been altered to L0nT , i.e.,

@L0 no longer contains any loops trivial in @M0. We will prove the lemma for this

altered lamination.
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Let 
 be a (singular) loop in a leaf L0 of L0, which is null-homotopic in M0. Then


 is also null-homotopic in M. Since L0 is contained in a leaf L of L, and this leaf

is �1-injective in M, it follows then that 
 is null-homotopic in L. Let H : D2 ! L,

be a null-homotopy, and make it transverse to @M0. Then � = H�1(@M0) is a

(�nite) collection of circles in a disk D2. Consider a circle 
0 of � innermost in

D2, and consider the leaf l0 of the lamination �0 =L0\@M0which H maps it into.

This leaf is homeomorphic to either S1 or R. If it is homeomorphic to R, then


0 is null-homotopic in l0, and so by rede�ning H on the disk �0 of D2 cut o�

by 
0 so that it maps into l0 (and then homotoping H o� of l0 slightly), we get a

new null-homotopy for 
0 with fewer circles of intersection in �. If l0 is a circle,

then one of two things will be true. In the most usual case 
0 again maps into

l0 null-homotopically, in which case we proceed as before, �nishing the proof by

induction. When 
0 is essential in l0, we must use a di�erent argument which

avoids the induction.

Because 
0 is innermost, it bounds a disk �0 in D2 which misses �, so the

image of �0 under H misses @M0, and hence maps into M0 or M1 =Mnint(M0). So

some non-trivial power of l0 is null-homotopic in M0 or M1.

If 
0 is null-homotopic in M1, this means that the torus @M1 is compressible in

M1. Because M1 is irreducible by hypothesis, it follows that M1 is in fact a solid

torus. This implies that our original 3-manifold M is a union of two solid tori glued

along their boundary, and hence is a lens space. But this is impossible, since a

lens space cannot contain an essential lamination (it does not have universal cover

R3 [7]).

If 
0 is null-homotopic in M0, then because �1(M0) is torsion-free (it's Z), l0 is

also null-homotopic in M0, and therefore bounds a disk leaf of L0, by hypothesis.

By our additional hypothesis, this disk is not @-parallel in M0, so it must be
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essential in M0; in particular, L0 contains a meridian disk leaf. Now consider

the collection � of meridian loops of @L0. By hypothesis, these loops bound a

collectionM of meridian disk leaves of L0. Again, Reeb Stability implies that this

collectionM is closed in L0, so � is closed in @L0. But then the leaves of @L0 not

in � live in the annular regions between loops of �; they cannot be compact (they

would then be trivial or meridional), but they cannot be non-compact, because

they would have to limit on �, giving non-trivial holonomy around a loop which

bounds a disk. Therefore, M =L0, so every leaf of L0 is a meridional disk, which

obviously �1-injects.

b. Making intersections taut: solid tori.

Because a Seifert-�bered space can be thought of as a union of solid tori, which

meet along their boundaries, it will also be useful to have a general procedure to

isotope an essential lamination L so that it meets a vertical solid torus M0 in a

Seifert-�bered M in a lamination, L\M0 = L0, which has �1-injective leaves. We

will show later that such a lamination L0 in fact has a rather simple structure; this

result will then be exploited to give our structure theorem for essential laminations

in Seifert-�bered spaces.

Now there is in fact a very easy way to do this: just think of a solid torus M0

as a regular neighborhood of its core circle 
0, make 
0 transverse to a branched

surface carrying L, and then L \M0 will be a collection of meridian disks in M0,

which certainly has �1-injective leaves.

Unfortunately, this is a far too destructive process for our uses; it loses alot

of the information that we will be gathering in the proof of our theorem. In-

stead we will construct an isotopy which is much more `conservative' (and which,

incidentally, allows much more interesting laminations L \M0 to be created).
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We have seen already that in order to make a lamination meet a (nice) solid

torus M0 in a �1-injective lamination L0=L\M0, we need only arrange that any

loop of @L0 which is null homotopic in M0 bounds a disk in L0. What we will

now do is to describe an isotopy process which, given an essential lamination, will

arrange exactly that.

First we deal with trivial loops of �0 = @L0. If @L0 contains loops which are

trivial in @M0, the collection C of such loops in @M0 is open and closed in @L0,

and (by transversality) consists of a �nite number of families of parallel loops in

@L0.

Now take an outermost loop 
 of an innermost family of trivial loops. 
 bounds

a disk D in @M0, and a disk D0 in the leaf of L containing it, and they are isotopic,

rel 
 (because M is irreducible). An (ambient) isotopy of L taking D0 to D and a

bit beyond has the e�ect of removing the family of loops containing 
 from �0 (and

possibly more). To be more exact, such an isotopy must be done in stages, since

it is not immediate that D0\D=
; it could consist of (a �nite number of) loops

in D0 (one then argues from innermost out). Then by induction on the number of

parallel families in �0, we can assume that L\F contains no trivial loops.

Now if @L0 still contains loops which are null-homotopic in M0, then these

loops must be meridional, i.e., bound disks in M0 but not in @M0. What we �rst

must establish is that at least one of these loops in @L0 bounds a disk leaf of L0.

Choose a meridional loop 
 of @L0. Because L is essential, this (embedded) loop

bounds a disk D in L. Consider the intersection D \ @M0 � @L0; this intersection

consists of (a �nite number of) closed loops. Choose an innermost such loop 
0 in

D, bounding a disk � in D (possibly 
0 = 
).

Claim: � is contained in M0.
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If not, then � � Mnint(M0) (because 
0 is innermost). 
0 cannot be trivial

in @M0 (there are no trivial loops in �0, so it is essential in @M0=@(Mnint(M0)).

So � represents a compressing disk for @(Mnint(M0)). Therefore, Mnint(M0) is a

solid torus, making M a lens space (the union of two solid tori), a contradiction (a

lens space doesn't have universal cover R3, and M does [7]).

Therefore there is a disk � in L0 �M0 with boundary a loop 
0 � @L0 � @M0.

Consider now the collectionM of meridian disk leaves of L0. Reeb Stability implies

that this collection is open and closed in M0, as before. Moreover, becauseM 6= ;,

the laminationL1 = L0nMmust have @L1 consisting of meridional loops; it cannot

contain any trivial loops, by construction, and any non-compact leaf of @L1 would

have to limit on a meridional loop, implying non-trivial holonomy around a loop

null-homotopic in a leaf of L, a contradiction.

Every leaf of L1 has more than one boundary component; if a leaf had only

one and were compact, then it would contain a non-separating loop contained in

the ball M0n�, implying the leaf of L containing it was not �1-injective in M. If

the leaf were non-compact, then the limit set of an end (see [14] for a de�nition)

would be a lamination which did not meet @M0; it would then be contained in

the interior of a ball, implying the existence of an essential lamination in a sphere,

which is impossible.

This implies that, although M0jM is a possibly in�nite collection of balls, only

�nitely many of them can contain any leaves of L1. To see this, look at a loop 


having intersection number 1 with each loop of the meridional lamination @L0. If

there are an in�nite number of regions containing leaves of L1, then there are an

in�nite number of (distinct) arcs of 
jM meeting these leaves. Such a collection

of arcs must have their lengths tending to 0. If we look at the top endpoints (in

some orientation of 
) of these arcs, we have an in�nite sequence of (distinct)
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points in @M, which (because M is closed) must limit on some point of 
 \M.

This point therefore lies in a meridional disk leaf D of L0; therefore by Reeb

Stability, all nearby leaves are also meridian disks. But the top endpoints of the

arcs are limiting on this leaf, and the lengths of the arcs are tending to zero (so

the bottom endpoints are limiting on D, too), implying that these non-disk leaves

pass arbitrarily close to D, a contradiction.

Now look at a component N of M0jM, and the leaves of L1 contained in it. N

is a ball with two leaves of M in its boundary.

Every loop of @L1\N= � bounds a disk D in the leaf of L containing it; thinking

of L�N(B), the set of these disks which are parallel to D in N(B) have boundaries

forming an open and closed set in �. Consequently, they fall into �nitely-many

parallel families (in N(B)). For (choosing an arc � running from the top to the

bottom of the ball) every point of � \ � has an open neighborhood in � whose

points are in loops bounding parallel disks in N(B); because � \ � is compact in

�, there is a �nite subcover, giving the �nite number of families.

Therefore, the loops of @L0n@M fall into a �nite number of such parallel fam-

ilies.

It is possible to see a �nite sequence of surgeries of L in M0 which makes every

loop in @M0 bound a disk in M0 (see Figure 3). These surgeries represent our

`template'; what we wish to do now is use this surgery picture to �nd an isotopy

of L which will do the same thing.

Figure 3: surgery in the solid torus
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We have a �nite number �1; : : : ; �n of families of loops in @L0n@M which bound

a collection Di of disks in L parallel in N(B). Think of doing these surgeries family

by family. Choose a collection Di; note that every disk in the collection meets �i

only in its boundary (a disk cannot be parallel in N(B) to a proper subdisk of itself

- it would imply that the disk met an I-�ber of N(B) in�nitely often).

Therefore the disk in Di together with one of the disks from the surgery form

an embedded sphere in M (all of which are parallel to one another); because M

is irreducible, they bound (nested) balls (see Figure 4). This ball, together with

the ball that the two `outermost' surgery disks bound, forms a ball which can be

used to describe an isotopy taking the disks in Di to the (other) collection of disks

in M0, making the collection of loops �i bound disks in M0. This isotopy may

have removed leaves of M, as well as loops from some of the �i, but since it can

be thought of as a replacement (surgering, and then throwing away the spheres

created), it adds nothing to any intersection L has with any object outside of the

Figure 4: surgeries to isotopies

interior of M0; in particular, it adds no new intersections with @M0, and moves

none of the disks which it didn't erase. By a �nite application of this process, then,

we can arrange that every loop in L\@L bounds a disk leaf in M0, completing our

isotopy.

3. �1-injective, end-incompressible laminations in a solid torus
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We have seen how to isotope an essential lamination L to make it meet a solid

torus in a �1-injective lamination L0 with no @-parallel disk leaves. It is easy to

see that L0 is end-injective (this is in fact true for any transverse intersection of an

essential lamination with a codimension-0 submanifold); any end-compressing disk

for L0 is an end-compressing disk for L. L0 is in general, however, not @-injective.

Such a lamination, however, still has a great deal of identi�able structure.

Theorem 3.1: A lamination L0 as above is either a collection of meridian

disks, or there is a (model) Seifert-�bering of M0 so that (after isotopy) L0 contains

a vertical sublamination L1 (whose leaves are annuli, with possibly one M�obius

band); all leaves of L0nL1 are non-compact, simply-connected, and horizontal.

The proof contains two essential ingredients; �rst one needs that the @-lam-

ination @L0 contains compact loops (which determine the regular �ber of the

Seifert-�bering), and then that every such compact loop is in the boundary of

a compact leaf of L0. The union of these leaves is the vertical sublamination L1.

First, though, we need a small catalogue of basic facts, so that we can more easily

recognize when these two things are happening.

a. Some basic facts about laminations in a solid torus

Fact 1: L0� D2 � S1 must meet the boundary torus; @L0 6= ;.

This is true more generally; an essential lamination cannot live in the interior

of a handlebody. To see this, take a meridian disk D (or, in the general case, a

compressing disk for one of the handles), and make L0 transverse to it. If L0\D=�

contains any compact loops, we can isotope L0 to remove them. So we can assume

� contains no compact loops. � is carried by the train track � = B0\D (where L0

is carried by B0), and contains only non-compact leaves; an Euler characteristic

calculation implies that, if � 6= ;, � will contain a monogon, so L0 does, which is

essential since L0 is transverse to D. So � = ;, so L0 misses D, implying that L0 is
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contained in a ball, B (or, inductively, is contained in the interior of a handlebody

of lower genus). It is �1-injective there (same argument as before), and contains

no spheres (L didn't), and so all of its leaves are planes. Capping this ball o�

with a ball, we get a lamination in S3, which is essential (because monogons can

be pushed o� the capping ball), a contradiction.

Fact 2: Every leaf L of L0 meets T= @M0.

Otherwise, the closure L of L would give a �1-injective lamination missing T.

Applying the argument above to this sublamination gives the same conclusion,

unless L\D contains a monogon; but then Euler-� arguments will �nd a monogon

for L0\D inside that one, which gives an end-compressing disk for L0, because L0

is transverse to D.

Fact 3: If a leaf L of L0 has more than one compact @-component, then it is

an annulus.

This is standard; the two loops 
1, 
2 are parallel, otherwise one of them is

trivial (making L a boundary-parallel disk). We can assume that they are oriented

coherently, so that they represent the same free homotopy class in the boundary

torus. Draw an arc � in the leaf joining the two components; then 
1 �� � 
2 �� is

(almost) an embedded loop in L null-homotopic in D2 � S1, hence bounds a disk

in L. It follows that L is a disk with two arcs in its boundary identi�ed, i.e. an

annulus.

Fact 4: An annulus A with @A vertical (in a model �bering of a solid torus) is

vertical.

This is also standard; from the previous argument it is easy to see that A is

@-parallel, and so isotopic to an (of necessity vertical) annulus in the boundary

of the solid torus. Pushing it back into the solid torus slightly, we see that A is

isotopic to a (properly embedded) vertical annulus.
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Fact 5: A non-orientable surface L with �1(L)=Z and a compact @-component


 is a M�obius band.

Proof: Let p:L0 !L be the orientable double cover of L. 
 is orientation-

preserving in L, so p�1(
) = 
1 [ 
2, disjoint simple loops mapping homeomor-

phically down to 
 under p. Being simple loops, they do not represent a proper

power in �1(L0) =Z [2]. So both represent the generator (up to reorienting the

curves), hence are freely-homotopic. By [5], they are then isotopic, and cobound

an annulus A in L0. Since 
1 and 
2 are @-components, this implies that L0 itself

is an annulus, hence compact.

So p(L0)=L is compact; by the classi�cation of surfaces, it is therefore a M�obius

band.

Fact 6: A M�obius band L with @L vertical (in a model �bering of a solid torus)

is vertical.

This follows from a result of [18], which says that one-sided incompressible

surfaces in a solid torus with a single boundary curve are determined up to isotopy

by the slope of that curve (�1-injective surfaces are incompressible). With this

result in hand it remains then only to show that @L represents 2x the generator

of �1(solid torus), because a vertical �1-injective M�obius band with that boundary

slope can easily be constructed.

But this in turn follows readily from some �1 considerations; let M=solid torus,

and consider M0=Mnint(N(L)). It �1-injects into M (since L is �1-injective), is

irreducible (sinceM is) and has boundary =(@Mn@N(L))[(@N(L)\int(M)= A1[A2

=annulus[annulus=torus. So M0 is a solid torus, and M=M0[A2
N(L).

Claim: The core of A2 represents a generator of �1(M0). For if the map

�1(A2)!�1(M0) sends 1 to n, then by Van Kampen's theorem �1(M) is equal

to �1(M0) ��1(A2) �1(N(L)), and since the core of A2 represents 2 in �1(N(L)), this
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implies that �1(M)= Z =(a,b : a2 = bn) = G. But the subgroup generated by a2

is normal (a2 commutes with both a and b), and G modulo this subgroup is

(a,b : a2 = 1;bn = 1) = Z2 � Zn. But every quotient group of �1(M)=Z is cyclic,

implying n=1.

In particular, M0 deformation retracts to A2, so M deformation retracts to the

regular neighborhood N(L) of L. Since @L represents 2�generator in �1(N(L)) (it's

parallel to the core of A2), it therefore represents 2�generator in �1(M).

Note also that there cannot be two disjoint such M�obius bands in a solid torus

M, because any other L0 would be contained in the solid torus complement M0 of

the other. The boundary of L0 is parallel to @L in M, but @L now generates the

fundamental group of M0 (this is easy to see when L is vertical), and so @L0 cannot

in fact bound a M�obius band in M0 (the generator can't be divisible by 2).

b. Proof of the theorem

Lemma 3.2: Any �1-injective, end-incompressible lamination L0 in a solid

torus M0 contains a compact @-leaf.

Proof: Suppose not; we know from Fact 1 above that @L0 is non-empty. From

the catalogue of @-laminations in section 2, @L0 contains an irrational lamina-

tion, and so can be isotoped so that it is everywhere transverse to the meridional

foliation.

Pick a meridian disk D in M0. By an isotopy of L0 (supported away from @L0)

we can make L0 transverse to D. By the usual argument, L0\D= �0 consists of

circles and arcs, and by an isotopy of L0 we can remove the circles of intersection,

using the �1-injectivity of L0. Pick an outermost arc � of this intersection. It cuts

D into two disks, one of which D0 meets L0 only in an arc of its boundary. The

other arc of @D0 lies in @Mij@L0, and and splits the component containing it into

two half-in�nite rectangles. Pick one rectangle R, then it is easy to see that D0[R
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is an end-compressing disk for L0, because L0 is transverse to @Mi, contradicting

the end-incompressibility of L0.

Proposition 3.3: Every compact loop in @L0 is contained in a compact leaf

of L0.

Proof: We will proceed by exhaustion. For a di�erent proof, arguing by con-

tradiction, see [1].

If the loop is null-homotopic in M0, then it bounds a meridional disk leaf of

L0. Therefore, we can assume that it is not meridional. If any leaf L containing

a compact @-loop is non-orientable, then by Fact 5, it is a M�obius band, hence

compact. If we split L0 along L, and then split M0 along L, we get a new lamination

in a new solid torus, with all the same essentiality properties that the originals had.

But this lamination now has no M�obius band leaves, by Fact 5 (L0 had at most

one). In other words, after possibly splitting L0 and M0 , we can assume that L0

contains no non-orientable leaf with a compact @-component.

Now let � be a meridonal disk of M0, which we may assume meets @L0 trans-

versely, and meets each compact loop of L0 tautly. By an isotopy of L0 supported

away from @M0, we may make L0 transverse to �, and by a further isotopy we can

remove any loops of L0 \�=�. � then consists of compact arcs, which fall into a

�nite number of parallel families.

It is easy to see by inspection that the collection of compact loops C of @L0 is

closed in @L0 . But also the collection C0 of loops in C which are in the boundary

of a compact leaf of L0 is open and closed in C; the leaf L must be an annulus,

because �1(L) injects in �1(M0 )=Z. Call the boundary components of L 
1 and


2. It is easy to see that an arc � of � emanating from 
1 has its other endpoint

in 
2 (otherwise L contains an orientation-reversing loop), and L split along � is

a disk, with boundary �1 [ � [ �2 [ ��. This disk then lifts to a disk in any nearby
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leaf in the normal fence over L; in particular, its boundary lifts to a closed loop.

This implies that if there is a compact loop 
 lying close enough to 
1 (say), then

�1 lifts to a closed loop in the leaf containing 
, so � and �� are mapped onto one

another, so �2 also lifts to a closed loop. Therefore the leaf of L0 containing 
 has

two compact @-components; by Fact 3, it is then an annulus, hence compact. This

shows that the set of loops bounding compact leaves is open in C . Showing C0 is

closed is easier; the set of compact leaves of a lamination L0 is always closed [15,

Lemma 1.2], so its set of @-components is also closed .

Suppose now that CnC0 is not empty. It then follows from the above that there

is an arc of � emanating from an element 
 of CnC0 whose other endpoint is in a

non-compact leaf. Because CnC0 is closed, we can �nd an outermost such arc �

(i.e., one cutting o� a subdisk �0 of � which misses CnL0 n(
 \ �)). 
 is isolated

in C on the �0-side, because C0 is closed; and the arcs of � joining the loops of

C0 to one another one the �0-side fall into a �nite number of parallel families, so

there are a �nite number of innermost such arcs (i.e., closest to �), contained in a

�nite number of annulus leaves of L0. If we remove small neighborhoods of these

annuli, we split M0into a �nite number of solid tori (with L0 meeting each solid

torus in a �1-injective and end-incompressible lamination), and in the component

containing 
, (what is left of) �0 no longer meets any other compact loops.

Figure 5: Finding the other compact loop

Now look at the arc � and the leaf of @L0 it joins to 
. We must have a situation
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like one of those pictured in Figure 5. If the other endpoint is in a Kronecker leaf

(Figure 5a), or in the `inner half' of a Reeb leaf (Figure 5b), then it is easy to �nd

an end-compressing disk for L0, a contradiction. If it is on the outer half of a Reeb

leaf `0, then we will iterate our chase, to �nd a contradiction.

Notice �rst that all of the arcs of � in �0 must be parallel, otherwise we can �nd

an end-compressing disk (Figure 6a). If we follow `0 around, it will return to �0

again at a point x0 after travelling at net 0-times around @M0vertically, and there

is an arc �0 joining `0 to the outer half of some other Reeb leaf `1 (otherwise we can

�nd an end-compressing disk (Figure 6b,c)). We can continue this construction,

�nding a sequence of arcs �i of �, which have a limit �1 in �. But it is easy to see

(by lifting the picture to the universal cover of M0 (Figure 6d)) that the endpoints

of �1 are in the same leaf of @L0 , and split o� an arc � which wraps around @M0

a net 0-times longitudinally. Therefore, �1[� is a null-homotopic simple loop in a

leaf L of L0, so bounds a disk in L. But it is easy to see that our construction (the

�i[ the arcs of the `i) string together to form a half-line spiralling in on �1 [ �,

implying non-trivial holonomy around the boundary of a disk, which is impossible.

Figure 6: various cases

Consequently, C0=C , i.e., every compact loop of @L0 is contained in a compact

leaf of L0.

To complete the theorem, consider our `essential' lamination L0. By Lemma

3.2, @L0 contains a compact loop 
. Choose the Seifert-�bering of the solid torus
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M0 whose regular �ber in @M0 is isotopic to 
. Since every compact loop of @L0 is

parallel to 
, we can, after an isotopy of of L0 supported near @M0, assume that

every compact loop of @L0 is a �ber of M. Now by the proposition every leaf of L0

which contains a compact @-loop is compact. They have vertical boundaries, and

so by the facts above, each can be isotoped to be vertical in M. They can in fact be

so isotoped simultaneously; the leaves fall into a �nite collection of parallel families,

and each family can be isotoped in turn, from the innermost out; think of isotoping

the innermost leaf of the family to the boundary and then back in slightly; this is

an ambient isotopy which makes the entire family vertical. Subsequent isotopies

will be supported away from the ones which have already been straightened. This

isotopy gives the vertical sublamination L1 of the theorem.

Now consider the leaves of L0 which are not in L1. These leaves all have non-

compact boundary (which we assume runs transverse to the foliation of @M0 by

�ber circles), and so limit on leaves of L1. From holonomy considerations, this

limiting takes place in a very simple way; see Figure 7a.

Figure 7: making the other leaves horizontal

Thus in each component M1 of M0jL1, it is possible to arrange the leaves of

L0, by an isotopy supported away from @M0, to meet a saturated neighborhood

of the boundary of the component as in Figure 7b. It is easy then to see that

M0 =L0\(M1nint(N(L1)) is �1-injective in M2 = M1nint(N(L1)) (we have just

removed half-in�nite rectangular `tails' from the leaves of L0, and the solid torus
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M2 �1-injects into M0), and end-incompressible (a monogon for M0 is a monogon

for L0, since L0 is transverse to @M1). Also, its @-lamination is transverse to the

circle �bering of @M1 induced from M0, so it has no trivial leaves. Consequently,

by the proof above, it either consists of meridian disks, or it contains an annulus

or M�obius band leaf L. If the latter occurs, then L has boundary transverse to the

vertical �bering of @M2 induced from M0, and so meets every �ber of @M2. In

particular, since @M2\@M0 6= ;, @L meets @M0.

Now, there is an arc � in L which together with an arc � in @M2 bounds a disk D

in M2 (if L is an annulus this is because it is @-parallel; if L is a M�obius band, look

at the boundary of a regular neighborhood of L; it is a @-parallel annulus, which

supports such a disk, and then project back). By an isotopy of D (leaving � in L

and � in @M2) we can arrange that � is contained in an annulus A of @M2\@M0,

and so we can make it lie in a circle �ber of this annulus. We may also assume

that D is transverse to L0, meeting it in a collection of compact arcs.

Now consider in what leaves of @L0�@M0 the endpoints of � are lying in. None

of the circle loops of @L0 meet A, so these points are contained in (distinct; these

leaves run transverse to the circle �bering of @M0) non-compact leaves of @L0.

Therefore (see Figure 7c) � together with a pair of half-in�nite arcs in @L0 cut o�

a half-in�nite rectangle in @M0; this together with the disk D form a monogon for

L0; embedded in this is a end-compressing disk for M0jL0 (essential because its

`tail' is in @M0, which is transverse to L0).

This gives us a contradiction, so M0 consists of meridian disks with boundary

transverse to the circle �bering; an isotopy rel boundary makes this a collection of

horizontal disks. Doing this for all of the components of M0nL1 gives an isotopy

of L0 which makes every leaf of L0nL1 horizontal, in our chosen Seifert-�bering of

M0.
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Since the lamination in the saturated neighborhood is also clearly horizontal,

this implies that the leaves of L0nL1 can be isotoped, rel L1, to be horizontal in

M0. By gluing back, we have then arranged that

(*) the leaves in the complement of the vertical sublamination of L0 found

above can be isotoped (rel the vertical sublamination) so that they are horizontal.

Since these leaves are just disks with half-in�nite rectangles glued to them,

they are also simply-connected. This completes our proof.

4. A special case: @M6= ; and L\@M=;

In this section we give a proof of the theorem in the case stated in the title. In

the next section we give the general proof; this preliminary result will need to be

used in that proof.

In this case in fact only one of the stated conclusions can occur:

Theorem 4.1: If L is an essential lamination in the compact, orientable

Seifert-�bered space M, with @M6= ; and L\@M=;, then up to isotopy, L contains

a vertical sublamination.

The idea of the proof (as in the general case) is to split M up into a collection of

solid tori Mi, and then isotope L so that it meets each solid torus in a �1-injective

lamination Li�Mi with no @-parallel disk leaves. In each solid torus it is therefore

is an `essential' lamination, and so our structure theorem of the previous section

tells us what each looks like.

The proof here involves a somewhat di�erent decomposition of M into solid tori

than the one described in section 2. The base of the Seifert-�bering is a compact

surface with boundary. It is well-known that such a surface can be split along

proper arcs to give a disk; splitting along additional arcs, as necessary, we can

split the surface into a collection of disks, each containing at most one multiple
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point(=image of a multiple �ber) of the Seifert-�bering. Then as before, the inverse

images of these disks are solid tori; the di�erence here is that each of the solid tori

of the decomposition meets @M in one or more annuli, and L does not meet these

annuli (because it misses the boundary). Let A= the union of the inverse images

of the splitting arcs; it is a �nite union of annuli. By an isotopy of L we can make

L transverse to A, and by the usual methods, we can remove any trivial circles of

intersection from L \A=�. � is then incompressible in A, so any compact loop in

� is parallel to @A; by an isotopy of L we can make such loops vertical in A. Set

Li=L\Mi.

Each Li is �1-injective in Mi, by Lemma 2.1, sine Mnint(Mi) is Seifert-�bered

with non-empty boundary, hence is irreducible (see, for example, [Ha]), and @Li

contains no meridonal loops (they would have to meet Mi\@M).

Therefore each Li is an `essential' lamination in the solid torus Mi which con-

tains it. Now if L\A=;, then Li\@Mi =; for all i. But then by Fact 1, Li=; for all

i, so L=;. If L\A6= ;, then for some i, @Li contains vertical loops, and so some Li

contains a vertical sublamination. Now consider all of the vertical sublaminations

in all of the Li. They each meet @Mi in the (entire) collection of vertical loops of

@Li, and so they glue together across the Aj to give a lamination in M, which is

the vertical sublamination of L required by the theorem.

5. Proof in the general case

For convenience we will assume that M is closed; @M = ;. The proof in the

bounded case is entirely similar, although some of the isotopies must be constructed

slightly di�erently.

We think of M as a union of (embedded) solid tori Mi = ��1(�2
i ), i=1,...,r

which meet one another in the annuli Aj in their boundaries. We set S=��1(F(0)),

the collection of sentinel �bers of the decomposition of M into solid tori.
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a. The isotopy process

The strategy of the proof is to set up an isotopy process, i.e., a sequence of

isotopies Ij which will, one by one, isotope L to meet the ith solid torus (j � i(mod

r)) only in horizontal disks, while at the same time controlling the intersection of

Ij(L) with the sentinel �bers S. What we will see is that if at any stage of the

process we are unable to continue the isotopy process, we can use this information

to �nd a vertical sublamination of L (after possibly splitting one of the leaves of

L). Otherwise, we are able to continue the isotopy process inde�nitely, and then

we will be able to see that (larger and larger pieces of) L begin to limit on (larger

and larger pieces of) some lamination L0, which, by its construction, is horizontal;

as it turns out, L0 is in fact isotopic to a sublamination of L.

We have seen how to isotope a lamination so that it meets a (vertical) solid

torus Mi in a lamination Li with �1-injective leaves (MnMi is irreducible because

it is Seifert-�bered with non-empty boundary (see [7])). Consider now how this

isotopy a�ects L\S, the intersection of L with the sentinel �bers S. This isotopy

was achieved by doing surgery on L in the solid torus, and then throwing away any

2-spheres which are created. In terms of the sentinel �bers, this means that L\S

(after surgery) is contained in L\S (from before the surgery). This is what we

mean by controlling the isotopies. We will call an isotopy which has this control

conservative.

Now after this (preliminary) isotopy, we have arranged that L\Mi=Li is �1-

injective in Mi. It is also end-incompressible, and contains no spheres or @-parallel

disks (by construction), so it is `essential'. By the Theorem it then either consists of

meridional disks, or contains a vertical sublamination w.r.t. some Seifert-�bering

of Mi (not necessarily the one that it inherits from M).
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Let us consider �rst the case that Li consists of meridional disks. We wish to

show that, by an isotopy of L which controls the intersection of L with S, we can

makeLmeetMi in a collection of taut disks (meaning each disk meets each annulus

of @MijS in essential arcs). To do this, consider �=@Li�@Mi, and its intersection

with each annulus complement Aj of S in @Mi. This intersection consists of a �nite

number of parallel families of essential and trivial arcs in Aj.

Note that because � is (assumed to be) carried by a train track � = B\@Mi,

there is an upper bound on the number of times a loop in � can meet S (the loops

fall into a �nite number of loops parallel in � ; each loop in a family meets S the

same number of times). Now, any collection of trivial arcs in an Aj can be removed

by an isotopy of L supported in a neighborhood of the disk which the innermost

arc of the family splits o� from Aj. This reduces the number of times the loops

of � containing these arcs meets S. By an inductive use of this process, eventually

every loop of � must be taut. Note that this isotopy never adds points to L\S,

only removes them.

If, on the other hand, @Li contains non-meridional loops, then Li contains an

annulus or M�obius band leaf. Look at the collection C of compact leaves of Li; it

is a (closed) sublamination of Li. C\@Mi consists of a collection of parallel loops

in @Mi; by a process similar to that just described, we can make these loops meet

S tautly.

There are now two cases to consider:

Case 1: @C�@Mi runs parallel to S (i.e., C\S= ;), or C contains a M�obius band

leaf. Then (see Fact 6 of section 3 for the M�obius band case) we can isotope C (in

so doing isotoping L) so that C contains a circle �ber of M. Therefore, possibly

after splitting L along the leaf containing the �ber, we may assume that L misses

a circle �ber 
 of M, and therefore misses a small (�bered) neighborhood of 
,
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and so we can consider L�Mnint(N(
))=M0. Now, thought of in M0, L is still

essential: �1-injectivity of leaves follows from the injectivity of the composition

�1(L)!�1(M0)!�1(M), @-injectivity is vacuous (L misses @M0), irreducibility of

M0jL follows because 
 is essential in MjL, and end-incompressibility follows easily

(because M0 is a codimension-0 submanifold of M).

Therefore by Theorem 4.1, L contains a vertical sublamination L0 in M0, and

hence contains a vertical sublamination in M. We had to split L open to �nd

this sublamination; we need to show that L also contains a vertical sublamination

before splitting.

Consider the component N of MjL created by the splitting. It is a (possibly

non-compact) I-bundle, and it has one or two boundary components which are

leaves of L. It is easy to see that they are contained in the vertical sublamination

of L (they are the �rst leaves that the vertical annuli would meet travelling away

from @M0, so the leaves contain vertical loops). Therefore N is saturated by circle

�bers, so it is a Seifert-�bered I-bundle, with vertical @I-subbundle. It is easy to

see that such a bundle has a vertical section L (since N is orientable, there are

only 4 cases); but by collapsing N onto L, we reverse the splitting, retrieving our

original lamination L with the vertical sublamination (L0 n@N)[L.

Case 2: @C�@Mi meets S, and C does not contain a M�obius band leaf. Then

every leaf of C is a @-parallel annulus, and the loops of @C meet S non-trivially

and tautly. The leaves of C again fall into a �nite number of parallel families in

Mi. Choose an innermost leaf L of an outermost family in C, and choose a @-

compressing disk � for L, @� = � [ �, with � �L and � contained in a loop of S.

By the usual methods we can assume that L meets � transversely in a collection

of arcs.
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Figure 8: killing annuli

Then by doing a @-surgery on L using (a disk slightly larger than) �, we can

split the annulus leaves in the same family as L into a collection of trivial disks

(see Figure 8), which we can then isotope away using our previous methods. Note

that this creates no new families of annuli or M�obius bands; the e�ect of surgery

on leaves near L is to cut o� half-in�nite rectangular tails from simply-connected

leaves (each parallel family is open and closed in Li), and cut them into trivial

disks. So simply-connected leaves remain simply-connected. It also adds no new

points of intersection to S.

After a �nite number of such surgeries, we can kill o� all of the annulus leaves

of C; L\Mi then must consist of meridional disks (because it is still �1-injective

and end-incompressible), which we treat as before.

The construction above forms the core of our isotopy process. Starting with

L, either it contains a vertical sublamination or there is a conservative isotopy I1

so that I1(L) meets M1 in a collection of taut disks. We now continue cyclically

through our list of solid tori M1; : : : ;Mr, so that at stage j, we are adding to the

previous isotopies, trying to make Ij(L) meet Mi in taut disks, where

j � i(mod r). By the above construction, either this isotopy can be built, or L

contains a vertical sublamination.

If we therefore assume that L does not contain a vertical sublamination, then

are able to construct an in�nite sequence of isotopies Ij with the property that Ij(L)

meets Mi in a collection of taut disks. If at any stage Ij(L) meets all of the solid

tori M1; : : : ;Mr in taut disks, then as in section 4 these disks can be `straightened'
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out, completing the isotopy of L to a horizontal lamination. Thus L is itself a

horizontal lamination.

Because each of the above two situations justify the theorem, we (can and)

will assume from now on that neither of them hold; i.e. L does not contain a

vertical sublamination, and is not itself isotopic to a horizontal lamination. We

will therefore think of these isotopies as de�ning an in�nite isotopy process; we

�nd ourselves forever pushing L around, and are `not quite' able to make it all

horizontal.

We will need a little more notation to continue. We have de�ned Ij as the

composition of the �rst j isotopies of L, making L meet the solid tori Mi cyclically

in taut disks. We will let I(j) represent any stage of the isotopy between Ij�1 and

Ij. We will also let Ij;k denote the composition Ik � I
�1
j (i.e., the composition of the

isotopies built between the jth and the kth stages), so that Ij;k � Ij = Ik.

b. Finding stable arcs

Now we have an isotopy process, and we assume that it continues inde�nitely.

This means that at no stage does it succeed in pulling L horizontal, but for all j, the

isotopy Ij succeeds in making L meet Mi in taut disks, where j�i(mod r). Now for

each j, the points Ij(L)\S form a (closed) collection of points in S, the set of sentinel

�bers of our Seifert-�bering. By the construction of the isotopy Ij, these points

were never moved by any of the isotopies that went into the construction of Ij, i.e.,

they are stable under these isotopies. In particular, for j�k, Ij(L) \ S � Ik(L) \ S,

i.e., these sets are nested. They are also non-empty; if Ij(L)\S = ;, then L misses

a �ber of M (i.e., any of those in S), and so, by Theorem 4.1, contains a vertical

sublamination. But we have assumed L contains no such sublamination.

So we have a nested sequence of closed, non-empty subsets of the compact set

S; their intersection \(Ij(L) \ S) = P0 is therefore non-empty. P0 in fact meets
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every component of S (for otherwise Ij(L) must have missed that component for

some j, allowing us to �nd a vertical sublamination again). By construction, P0

consists of all of the points of L\S which are never moved by any of the isotopies

in our isotopy process, i.e., they represent the stable points of our isotopy process.

What we will now show is that, as we watch the isotopies progress, these points

become `islands of stability' for the process; a stable (horizontal) lamination starts

to `grow' out of them.

Now, consider a 1-simplex ei 2 B(1) and the annulus Ai=��1(ei), @Ai �S. Pick

points x, x0 of P0, one in each component of @Ai. What we wish to look at now

are the arcs of Ij(L)\Ai containing x, x0 (call them, respectively, �, �0), and how

they change under further isotopies. Because for each arc one of its endpoints

is anchored down (x, x0 are stable), the only way these arcs can change is by

`boundary compressions' (see Figure 9). Our intent is to show that for some k�j,

each of these arcs Ij;k(�), Ij;k(�0) has both of its endpoints in P0. This arc would

therefore be stable, i.e., Ij;k(�) (say) would be �xed under all further isotopies.

We proceed as follows. Given �, �0� Ai, there exists an arc !j (for `winding

number') joining x to x0 and not meeting �, �0 except at their endpoints. This is

because Ai split on �, �0 has 2 or 3 (if �, �0 are both trivial arcs in Ai) components,

at least one of which contains both x and x0.

Lemma 5.1: If at some further stage Ij0 of the isotopy process, one of the arcs

emanating from x, x0 has non-zero winding number wrt. !j (meaning it is not

isotopic rel endpoints to an arc meeting !j only at its endpoints), then at some

stage of the isotopy process between Ij and Ij0, one of the arcs emanating from x

or x0 was trivial, i.e., @-parallel in Ai.

Proof: Since �, �0, have zero winding number wrt. !j , and change only by

@-compressions, there is a �rst @-compression after which one of the arcs has non-
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zero winding number. We claim that, at the time of this compression, one of the

arcs is trivial.

For suppose not; note that since the stable ends of the arcs �, �0 are on opposite

sides of Ai, the @-compression leaves one of the arcs, say �0, �xed. Since this is the

�rst @-compression where the winding number changes, we have that the winding

number of �0 is zero. Now if �0 is not trivial, then its other endpoint is on the

same side as x (see Figure 9). Since � is not trivial, its other endpoint is on

the x0-side of Ai, so the @-compression is taking place on that side. But because

after the compression the arc emanating from x cannot meet �0 (because after the

compression, L still meets Ai in a lamination, which can't have leaves intersecting),

which hasn't been moved, only one of two things can have occurred: either (1)

the new arc �new is a trivial arc, in which case it is isotopic rel endpoints to an

arc in @Ai, with x as an endpoint, so has zero winding number, or (2) �new is an

essential arc (which lies in Aij�0, which is a disk), and so is isotopic rel x to �, by an

boundary-preserving isotopy which does not meet x0; and therefore �new also has

winding number zero w.r.t. !j , since it must then have the same winding number

that � has. Both of these situations, however, violate our hypothesis, giving the

necessary contradiction.

Figure 9: winding numbers

In other words, if one of the arcs moves alot, then one of the arcs had to be

trivial (at some time).
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It then follows, by an inductive use of the lemma (since the arcs emanating

from x, x0 in Inr+i(L) \ Ai are non-trivial (they are contained in the boundary of

taut disks in Mi)), that one of two things will happen:

(1) one of the points x, x0, is the endpoint of a trivial arc in I(k)(L)\Ai in�nitely

often (i.e., for arbitrarily large values of k),

or

(2) eventually, neither point is ever contained in a trivial arc, and there exists

j, and !j so that for k�j, the arcs of I(k)(L) \ Ai emanating for x, x0, never have

non-zero winding number wrt. !j .

What we now show is that the �rst of these possibilities must necessarily lead

to a contradiction, while the second leads to the eventual stability of the arcs ema-

nating from x, x0 (in order to avoid a contradiction similar to the one encountered

in the �rst case).

First case: x (say) is contained in a trivial arc �k of I(k)(L)\Ai for arbitrarily

large values of k.

What we will do now is watch the proliferation of the intersections of these

trivial arcs with 
, a loop in Ai lying parallel to the component of @Ai containing x.

Recall that our isotopies are conservative, so that the only points of the intersection

of L with the sentinel �bers which move are those which disappear. Now the e�ect

of a @-compression on the arc �k is to cut o� a short arc near its non-stable end,

and splice it to another arc by an arc running in the annulus between 
 and the

loop of @Ai it runs next to. We may assume that such compressions do not remove

points of intersection of �k with 
. We can therefore assume that the points of

�k\
 are �xed under all further isotopies, i.e., �k\
 � �k0 \ 
 whenever k0 � k.

Since the arc containing x periodically becomes essential (every time L \Mi is

pulled taut), it follows that this inclusion is usually proper, i.e., these trivial arcs

35



continue to pick up more and more points of intersection with the neighbor loop

as k gets larger and larger. It is the fact that these points must be piling up on

one another in the neighbor loop that is going to give us our contradiction.

First we need some notation. Let ! be an essential arc in Ai whose endpoints in

@Ai are not in L (in fact, since L\@Ai is closed, we may assume � -neighborhoods

(in @Ai) of the endpoints do not meet L, for su�ciently small �). Orient ! with

tail z on the component S of @Ai containing x. z and x separate S into two arcs,

called the left side and the right side of !. Orient the �k with tail at x, and orient

the neighbor loop 
. Using these orientations, we can assign local orientations to

the points of �k\
, and winding numbers to the arcs of �k between x and a point

of �k\
. Note that because the isotopies are constant near the points of �k\
,

and (�k\
) � (�k+1 \ 
), it follows that the local orientation assigned to a point

is the same as the one assigned when thought of as living in every further arc �k.

Also, the winding numbers associated to a subarc of �k is actually a function of

its endpoint t 2�k\
, because the arcs in �k and in �k+1 between x and t are

identical.

Call the other endpoint of �k (i.e. the one which isn't x) xk, and the intersection

point of �k with 
, which is adjacent to xk along �k, yk (see Figure 10).

Figure 10: stabilization: �rst case

Now, the winding number of the arc �i of �i between x and yi is always either

-1, 0, or 1. This is because �i di�ers from �i only in the short arc between xi and yi
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(which doesn't meet !), and �i has one of the above mentioned winding numbers

because, being trivial, it is homotopic (in fact isotopic) rel endpoints to a subarc

of S2 @Ai, which meets the winding arc ! at most once. Therefore, the winding

numbers assigned to the points yi in �k are either -1, 0, or 1.

Now lift the �i to the universal cover �:R�I ! Ai of Ai, sending x to (0,0)=~x,

and let ~yi be the resulting lifts of the points yi, obtained by lifting the �i. Let

~
=��1(
), so yi2~
. Because we could calculate the winding number of �i w.r.t. !

by lifting �i to ~�i and count the winding number w.r.t. all of the lifts of ! in R�I,

and this amounts basically to calculating the integer part of the �rst coordinate of

~yi2R�I, it follows that the points ~yi must lie in a compact piece [-2,2]�I of R�I.

So these points ~yi must be piling up on one another. In particular, for any

� > 0, there exist points ~yi, ~yj, j < i, which are within � of one another along ~
.

~�i n ~�j is the arc of ~�i between ~yj and ~yi, which together with the arc of ~
 between

these two points, forms a (null-homotopic; R�I is contractible) loop in ~Ai. This

loop projects down in Ai to a loop consisting of the arc �=�in�j in �i, together

with an arc of length < � in 
, and this loop is null-homotopic.

Now, consider this short arc � between yi and yj in 
. If � \ � � @�, then

� [ � is an embedded null-homotopic loop in Ai, hence bounds a disk D in Ai with

@D= � [ �, where � �L, and � is a short arc (of length < �) transverse to L.

But looking back across the isotopies carried out so far, this disk demonstrates

a homotopy of a vertical arc in N(B), rel its boundary, into a leaf of L. This,

however, contradicts [G-O, Theorem 1(d)], which says that such homotopies are

impossible.

If � meets � in the interior of �, then since � ��i, it follows that �i meets �

in interior points. Now �i cuts o� a disk � in Ai; think of it as being colored

green. � meets 
 in subarcs of 
n�i; think of these as being colored green as well.
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Because �i separates Ai, it follows that 
n�i consists of an even number of arcs,

which (travelling along 
) are alternately colored green and left uncolored ( locally,

�i is colored green on only one side).

Since �i meets � � 
 in interior points, it follows that �n�i� 
n �i contains a

colored subarc, �0. �0 is contained in �, properly embedded, and so it splits � into

two disks, one of which, �0, does not contain the arc � = @� \ @Ai. Therefore,

@�0 = �0 [ �0, with �0 ��i�L, and �0 � 
, transverse to L, with length < the

length of � < �. This, however, once again contradicts [G-O, Theorem 1(d)].

Therefore, this �rst situation is impossible.

Second case: �i and �0i are always essential (for i > i0), and there is some

essential arc ! �Ai joining x and x0 so that �i and �0i always have winding number

zero w.r.t. !.

We wish now to show that eventually �i (say) becomes stable, i.e., for some

i, �k=�i, for all k � i. This amounts to saying that xk = xi, for all k � i, i.e.,

xi 2P0.

So assume the contrary; assume that xki 6= xki�1
, for ki > ki�1, in�nitely often

(to save the reader's eyesight, we will conveniently forget that this expression has

a `k' in it, and write xi instead). We will then obtain a contradiction, in a manner

similar to the �rst case (with some slight technical additions).

We get an arbitrarily large collection of distinct points yi2 
, i= 1; 2; : : :, in the

�i which are near neighbors to the endpoints xi of the �i. Now, as before, we can

lift the �i, �0i to R� I = ~Ai, with ~x =(a,0), ~x0 =(b,1) �xed. Because the winding

number of the lifts of �i can be counted across the lifts of !, it follows that the

endpoints ~xi of the lifts of the �i based at ~x all lie in the interval [b-1,b+1]�1 and so

the points yi are contained in a compact piece ([b-1,b+1]�I)\~
�~
 of the neighbor

line on the ~x0i-side of R�I. So as before we have an arbitrarily large number of ~yi
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accumulating in a �xed compact piece of ~
, so eventually we can �nd (adjacent)

points of (some) ~�i\~
 which are within � of one another. the arc of ~�i joining these

two points, together with the arc of ~
 joining them, form an (embedded) loop in

R�I, which descends to a (singular) null-homotopic loop in Ai.

Lemma 5.2: If we orient �i, �0i so that x, x0 are at their tails, and look at

the normal orientations that this induces on the set T= (�i \ 
) [ (�0i \ 
) of

(transverse) intersection points with 
, then seen from 
 they occur with opposite

sign.

Proof: �i and �0i together separate Ai (although each separately doesn't) into

two disks D1, D2 (see Figure 11), with the orientations of �i, �0i, giving orientations

two two arcs in each boundary, as shown. Any arc � of 
 between two adjacent

points of T must lie in either D1 or D2 (D1, say). If the endpoints of � both

lie on the same end of @D1 then measured along � the normal orientations of its

endpoints are opposite; if they lie on opposite ends of @D1, then, because we chose

the orientations of �i and �0i to complement one another as they do, measured

along � the normal orientations of its endpoints are again opposite.

Figure 11: normal orientations

Note that this lemma would not be true if we dealt with only one arc (�i, say)

at a time; this is because by itself �i, say, does not separate Ai (see Figure 11).

Note also that if we lift �i to ~�i in R�I, with the lifted orientation, and look at the

normal orientations with which ~�i meets the neighbor line ~
, as you travel along
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~
 these also alternate; this is because ~�i now does separate R�I, so the situation

is just as in the �rst case of the lemma above.

Now, we have already found adjacent points of (some) ~�i\~
 which are within �

of one another along ~
. By the note above, these two points inherit opposite normal

orientations in ~
 from ~�i. Together with the arc of ~
 between them, the arc of ~�i

joining them forms an embedded null-homotopic loop in ~Ai, which descends to a

null-homotopic loop in Ai, consisting of an arc � of �i between points yio and yi1

of �i\
, together with the short arc � of 
 between them. If � \ � = @�, then,

as before, � [ � is an embedded null-homotopic loop; the disk it bounds gives a

null-homotopy violating [G-O, Theorem 1(d)], a contradiction.

If � \ � 6= @�, then in particular �i[�0i meets � in interior points. Now these

points of intersection inherit normal orientations from �i and �0i, which when seen

along � occur with opposite sign. The endpoints of � also have opposite sign (their

lifts did in ~
, and they remain the same when projected); it then follows that

there are an even number of points in C=(�i[�0i)\�. Since the endpoints of � both

belong to �i, it then also follows that some pair of points of C, adjacent along �,

both belong to �i or �0i (say �i), joined by a subarc �0 of �. Now �i and �0i together

separate Ai into two disks D1 and D2, and since �0 doesn't meet �i or �0i except

at its endpoints, �0 is contained in one of these disks, say D1. �0 separates this

disk into two sub-disks; because both of the endpoints of �0 are in �i, one of these

disks �0 does not meet @Ai (see Figure 12), so its boundary @�0 = �0 [ �0, where

�0 is a subarc of �i. This disk �0 would again give a homotopy violating [G-O,

Theorem 1(d)], and so gives a contradiction.

40



Figure 12: stabilization: second case

So all other possibilities lead us to a violation of [G-O, Theorem 1(d)]; we must

therefore conclude that, eventually, the arcs �i, �0i, for some i, emanating from the

points x,x02P0 are stable: their other endpoints are also in P0.

c. Proof of the theorem

We are now in a position to complete the proof of the theorem.

Given a point x 2P0 in the stable set of our isotopy process, and an annulus Ai

containing it, in the boundary of a solid torus Mi, we have shown that for some j,

the arc �j of Ij(L)\Ai which contains x is stable; all further isotopies of L �x �j.

This is equivalent to saying that its other endpoint is also in P0; since such an arc

would only be changed by @-compressions, and both its endpoints are stable, this

means that the arc cannot be moved by further isotopies.

Lemma 5.3: Given x 2P0, there is a neighborhood U of x in S and a j so that

for any x0 2 U\P0 and Ai �@Mi containing x0, x0 is contained in a stable arc of

Ij(L)\Ai.

Proof: Fix an annulus Ai containing x. By the above, there is a j so that x is

contained in stable arc � of Ij(L)\Ai, with other endpoint x0. Let U be a (closed)

�-neighborhood of x in the loop of S containing x, intersected with P0, and consider

the (taut) arcs of some Ikn+i(L)\Ai, with kn + i � j, emanating from these points

(then set j = kn + i). P0 is closed, so P0\U is closed in U ; there is therefore a

highest and lowest point of P0 in U . By choosing a larger j, if necessary, we may

additionally assume that the arcs of Ij(L)\Ai emanating from these points are also

stable. The collection Ij(L)\Ai of arcs is a 1-dimensional lamination in Ai, which

are all parallel to one another.
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Now, suppose an arc � of Ij(L)\Ai emanating from a point in P0 \ U moves

under a further isotopy. Consider the �rst time such a move occurs. Because the

endpoint of the arc on the x-side is stable, the change occurs as a @-compression

on the x0-side of Ai.

If the resulting arc is trivial, then because the points at either end of U are in

stable (essential) arcs, the disk that it cuts o� of Ai therefore meets @Ai in an arc

of Unx (because x is contained in a stable arc, too), which therefore has length

less than �.

If the resulting arc is still essential, then the @-compression joined � to a trivial

arc on the x0-side of Ai. But such a trivial arc (since all of the arcs between the

highest and lowest (essential) arcs emanating out of U were essential at stage j)

had to be created by some x-side @-compression at some stage after k; this trivial

arc (immediately after the compression) had to meet the neighbor loop 
 on the

x-side, and a subarc, together with a short arc of 
 (of length < �), bounds a disk

in Ai.

In each case we therefore have a situation which gives a disk violating [G-

O,Theorem 1(d)], a contradiction.

Repeating this argument for each of the annuli containing x, taking the maxi-

mum of the j's generated and the intersection of the U 's generated, completes the

proof.

Now we have that for each x in P0 there exists a pair (Ux; jx) given by the

lemma. The collection of Ux's form an open cover of P0, which, because it is

compact (P0 is closed in S, which is compact), has a �nite subcover, fU1; : : : ;Ung.

Set j=maxfj1; : : : ; jng, then it follows that every arc of Ij(L)\Ai emanating from

any point of P0, for any Ai, is stable; it has both of its endpoints in P0.
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Now choose a point x2P0\Mi, for any given Mi. For some r, 0 � r < n, x is

contained in a taut disk D of Ij+r(L)\Mi. But by dragging ourselves around @D

starting from x, we see inductively (using the above) that every point of @D\S is

in fact contained in P0, i.e., the boundary of this disk is stable, and therefore the

disk containing x is stable. It therefore follows that for every x2P0, and every Mi

containing x, x is contained in a stable, taut, disk of Ij+n(L)\Mi. Because P0\Mi is

a closed set in @Mi, it follows that the collection of disks of Ij+n(L)\Mi containing

points of P0 is a (closed) sublamination of Ij+n(L)\Mi; the union of these disks

over all of the Mi then forms a sublamination L0 of Ij+n(L) (they meet correctly

along the @Mi, in the (stable) arcs emanating from P0), which meets each Mi in

a collection of tauts disks. By a small further isotopy of Ij+n(L) (�rst supported

in a neighborhood of the @Mi to make the boundaries of the taut disks transverse

to the circle �bering of @Mi, then supported away from @Mi to make the entire

disks transverse) we can make L0 into a lamination meeting each solid torus in a

collection of transverse disks, i.e., L0 is a horizontal lamination.

Therefore, L contains a sublamination I�1j+n(L0) which is isotopic to a horizontal

lamination.
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