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Abstract. We show that non-integer surgery on a non-torus 2-bridge knot can
never yield a small Seifert-�bered space. In most cases, no surgery will yield a small
Seifert-�bered space.

x0
Introduction

A great deal of research in 3-manifold topology in recent years has been motivated
by Thurston's Geometrization Conjecture: every 3-manifold admits a canonical de-
composition into pieces admitting geometries locally isometric to one of 8 `model'
geometries. Further, experimental (and theoretical) evidence leads us to believe
that by far the most common of the 8 geometries to occur is the hyperbolic geome-
try, H 3 . In particular, if M is a hyperbolic 3-manifold with boundary component a
torus T, then Thurston showed [Th] that all but �nitely-many Dehn �llings along
T yield hyperbolic 3-manifolds.

A ready supply of examples to experiment with can be found among the class-
ical knot exteriors S3nint(N(K)). In fact, by Thurston's geometrization theorem,
a knot exterior S3nint(N(K)) admits a hyperbolic metric exactly when the knot
exterior contains no incompressible, @-incompressible annulus (i.e., K is prime and
not cabled), and contains no essential torus (i.e., K is not a satellite).

There are several ways that a manifold obtained by p/q - Dehn surgery along
such a knot K can fail to be hyperbolic; the causes include the possibility that
K(p/q)

(a) has �nite fundamental group

(b) contains a reducing 2-sphere

(c) contains an incompressible torus

or

(d) is a `small' Seifert-�bered space; a manifold �bered by circles, with base S2

and 3 multiple �bers.
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The geometrization conjecture is, in some sense, the statement that these are
the only possibilities.

In light of the Thurston's Dehn-�lling result, it is natural to ask under what
conditions each of these other possibilities can occur. In particular, for a given
(hyperbolic) knot, what restrictions can be placed on the possible Dehn surgery
coe�cients which lead to each of these cases? Much recent e�ort has been spent
on these questions, and, for the �rst three possibilities, a great deal is now known.

Boyer and Zhang [BZ] have shown that at most 6 Dehn surgeries on a hyperbolic
knot give manifolds with �nite fundamental group, and the Dehn surgery coe�cient
p/q is either an integer or half-integer; q=1 or 2. Gordon and Luecke [GL1] have
shown that at most 3 surgeries on a non-trivial knot give reducible manifolds, and
p/q is integral . They have also shown [GL2] that at most 7 Dehn surgeries on
a hyperbolic knot yield toroidal manifolds, and p/q is an integer or half-integer.
Similar results are known, in the �rst and third cases, for satellite knots.

In the last case, small Seifert-�bered spaces, Miyazaki andMotegi [MM] point out
that an answer to the above question can be given for satellite knots which are not
cable knots: at most two, integral, surgeries can yield a small Seifert-�bered space.
Nothing, however, seems to be known in the motivating case, namely hyperbolic
knots. Gordon has, however, conjectured that only integral surgery on a hyperbolic
knot can produce a small Seifert �bered space. In this paper, we prove that this is
true, for 2-bridge knots.

Theorem. Non-integer Dehn surgery on a non-torus 2-bridge knot cannot yield a
small Seifert-�bered space.

Our proof, unlike the others (which for the most part use the algebraic/graph-
theoretical techniques found in [CGLS]), will use essential laminations. In fact, it
is in some sense little more than the observation that the constructions of essential
laminations in the manifolds obtained by Dehn surgery on (non-torus) 2-bridge
knots, found in [De1], are incompatible with the structure theorem for essential
laminations in small Seifert-�bered spaces, found in [Br1], at least if the Dehn
surgery coe�cient is not an integer. Consequently, one cannot obtain a small
Seifert-�bered space by such a Dehn surgery.

Remark. Delman has other constructions of essential laminations in knot comple-
ments [De2], with the same properties that we exploit here, in particular for most
pretzel knot complements and Montesinos knot complements; consequently, the
same theorem we establish here follows immediately for these knots, as well.

There are several other ways in which to determine that a 3-manifold obtained
by Dehn surgery on a knot is not a small Seifert-�bered space. Wu has shown
that (because they contain incompressible surfaces, so Thurston's geometrization
theorem applies) every non-trivial Dehn surgery on most algebraic knots is hyper-
bolic (see [Wu]). The 2� - Theorem (see [GT] or [BH]) can also prove that various
ranges of Dehn surgeries on a (hyperbolic) knot yield manifolds admitting a met-
ric of negative curvature (and so are not Seifert-�bered) - one needs to establish
that the geodesic in the Euclidean structure for the cusp (i.e., the boundary torus)
representing the �lling has length at least 2�. However, incompressible surfaces
are, in some sense, rare, so the �rst approach seems di�cult to apply in much
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generality. It is also di�cult to describe lengths of �lling curves in terms of the
standard meridian/longitude basis for the boundary torus. Essential laminations,
by contrast, are (at least conjecturally, but also in practice) far more common than
incompressible surfaces (`most 3-manifolds are laminar'), and in the constructions
carried out so far, they in fact tend to be built in families, both of knots and of the
Dehn surgeries which they `survive'. Both of these properties lend themselves very
well to the program that we are outlining here.

x1
Essential laminations in small

Seifert-fibered spaces are not genuine

For basic concepts regarding essential laminations and essential branched sur-
faces, the reader is referred to [GO]. For the basic ideas about Seifert-�bered spaces,
the reader is referred to [He]. We will assume that all 3-manifolds we consider are
orientable (and hence have orientable boundary).

In [Br], we showed that every essential lamination L in a Seifert-�bered space M
contains a sublamination L0 which is isotopic to a horizontal or vertical lamination;
it is either transverse to all of the cicle �bers of M, or each leaf contains every
circle �ber that it meets. In particular, if M is a small Seifert-�bered space, then
M contains no vertical essential laminations, so L0 can be made horizontal. In
addition, if all of the leaves of L are non-compact, then all leaves of L can be made
horizontal; consequently, all components of MjL are products of a (non-compact)
surface and I. On the other hand, if L contains a (necessarily horizontal) compact
leaf, then the results of [Br2] show that L again has only I-bundle complementary
components.

Gabai [Ga1] has introduced the terminology genuine to describe an essential
lamination which has a complementary component which is not an I-bundle. The
lamination is a genuine one, because it is not `just' a foliation which has been
split open along some collection of leaves. We can therefore rephrase the results
described above to say that an essential lamination in a small Seifert-�bered space
is never genuine.

We will apply this observation, in the next section, by exhibiting some genuine
essential laminations, in manifolds obtained by Dehn surgery on 2-bridge knots. To
do this, we must be able to recognize a non-I-bundle complementary component of
a lamination. This can be done fairly readily, however, using an essential branched
surface which carries the lamination.

Proposition. If L �M is an essential lamination, carried with full support by the
essential branched surface B, then L is not genuine if and only if every component
of Mnint(N(B)) is an I-bundle over some compact surface �, with corresponding
@I-bundle equal to @hN(B), and @vN(B) equal to the I-bundle over @�.

This is implied by the following result:

Lemma. Every incompressible, @-incompressible annulus A in an I-bundle N over
a (possibly non-compact) surface F (without boundary) is isotopic to a vertical an-
nulus - the inverse image of a loop in F.

Proof of Lemma: The argument is very similar to the proof of the analogous result
for incompressible surfaces in Seifert-�bered spaces. First, let p be the projection



4 Mark Brittenham

from N to F, and replace N with p�1(a compact neighborhood of p(A)), so that N
is now compact (although the base F now probably has boundary). Now choose an
essential arc (or an esential loop to start with, if the base has no boundary), and
consider its inverse image under p. Because our annulus A is incompressible and
@-incompressible, and N is irreducible, we can, using standard innermost loop and
outermost arc arguments, isotope A so that it meets the splitting-rectangle over
this arc (or annulus/M�obius band, if we began with a loop) only in `essential' arcs,
i.e., ones which run from one horizontal boundary component of the rectangle to
the other, and, by a further isotopy, we can assume these arcs are in fact I-�bers of
the bundle N (see Figure 1).

But these arcs are also non-trivial in A; otherwise, an I-�ber of N can be homo-
toped, rel endpoojts, to the horizontal boundary of N; otherwise, the base or our
I-bundle is S2 or RP2, which allow for no incompressible annuli. But projecting to
the base F, this gives a null-homotopic loop in the base, which would lift (thinking
of @N as a 2-fold covering of F) to a closed loop in @N, not an arc, a contradic-
tion. Therefore, they cut A into rectangles. Continuing inductively, splitting N
open along these vertical splitting-rectangles, since F can be cut open along a �nite
number of arcs to a disk, we will arrive at a 3-ball B 3 , containing a collection of rect-
angles meeting the `vertical' part of @B 3 in vertical arcs. These annulus-rectangles
can now be easily isotoped to be vertical (see Figure 2) - the horizontal parts of
the boundary can �rst be isotoped to lie directly above one another, and then the
rectangles can be isotoped to the obvious vertical disk spanning this boundary. A
formal argument would �rst isotope the annulus-rectangles o� of these vertical disks,
by an innermost loop argument, and then use the Sh�onies Theorem to conclude
that the unions of the vertical disks and our annulus-rectangles are a collection of
spheres, bounding balls - the balls allow us to isotope the annulus-rectangles to the
vertical ones. By gluing N back together again along the splitting-rectangles, our
annulus-rectangles give a vertical annulus isotopic to A.

Figure 1 Figure 2

Proof of Proposition: One direction of the proposition is clear. MjL can be built
from Mnint(N(B)) by gluing on the components of N(B)jL. Each of the components
of N(B)jL are I-bundles, from the foliation of N(B) by intervals. If all of the
components of Mnint(N(B)) are I-bundles, then, since we can assume that the I-
bundle structures along the vertical boundary of Mnint (N(B))=@vN(B) is the same
as the I-bundle structure on the vertical boundary of N(B)jL, the two glue together
to give an I-bundle structure to MjL.

For the other (more important) direction, suppose that M0 = MjL consists en-
tirely of I-bundles, and consider the annuli @vN(B)�M0. These annuli split M0 into
Mnint (N(B)) and N(B)jL, and are (almost) incompressible and @-incompressible
in each piece. They are usually essential in Mnint (N(B)) by the essentiality of
B; a @-compressing disk for one of the annuli would give a monogon for B, a con-
tradiction. A compressing disk for one of the annuli, on the other hand, could be
pushed up o� of @vN(B) to give a compressing disk for @hN(B). Therefore, these @h
components must be disks, so the component of Mnint (N(B)) is a 2-disk�I, hence
a product. We can therefore `ignore' these pieces, and absorb them into N(B)jL,
i.e., we will actually consider the collection of @v-components which do not bound
2-disks� I.
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In the other direction, the inclusion of the base of the I-bundle M1 = N(B)jL
into the I-bundle (as the set of midpoints of each �ber) is a homotopy equivalence,
and the projection of each component of @vN(B) into the base is �1-injective, since
no component of the base is a disk, by essentiality of B - the disk would give a
disk of contact for B. Therefore, each annulus �1-injects into M1. They are also
@-injective, since the arc in the @I-bundle M1\L coming from a @-compressing disk
would project to the base of the I-bundle as a null-homotopic arc, rel boundary;
so since the @I-bundle is a 2-fold covering of the base, the null-homotopy lifts to a
null-homotopy in M1\L, rel boundary. But this implies that the endpoints of our
arc are in the same @-component of our @vN(B) component, a contradiction.

Being incompressible and @-incompressible in both directions, they are therefore
incompressible and @-incompressible in M0.

By the lemma, all of these annuli can be isotoped to be vertical in M0 = MjL.
Consequently, after the isotopy, each component of M0j@N(B) is saturated by I-
�bers of M0, i.e., is an I-bundle. Consequently, Mnint(N(B)), which consists of
components of M0j@vN(B), is a collection of I-bundles.

Corollary. If L is an essential lamination in a small Seifert-�bered space, carried
with full support by the essential branched surface B, then MnN(B) consists of I-
bundles, with @hN(B) corresponding to the associated @I-bundles.

x2
Genuine laminations in

2-bridge knot surgeries

In [De1], Delman constructs essential laminations, in the exterior M(K) of any
non-torus 2-bridge knot K, which miss @M(K), and which remain essential under all
non-trivial Dehn surgeries along K. These laminations have the property that each
is carried with full support by a branched surface B = B(K) s.t. the component N
of M(K)nint(N(B)) containing @M(K) is a 2-torus crossed with I, and the annuli of
@vN(B) meeting this component are parallel to the meridian circle of @M(K) (see
Figure 3). Further, there are at least two such annuli, and, in most cases, there are
at least four.

Figure 3

With these facts, we can see that, after non-integer Dehn surgery (if there are
two annuli), or, in most cases (when there are at least four annuli), after non-trivial
Dehn surgery, the resulting essential lamination is in fact genuine. After Dehn
surgery the component N of M(K)nint(N(B)) has been �lled in to a solid torus, and
the boundary of the meridian disk of this solid torus has intersection number jqj
with the core of each of the annuli of @vN(B) in the boundary of the solid torus (see
Figure 3). If the lamination is not genuine, then this solid torus has the structure of
a product (annulus)�I, with @vN(B) = @(annulus)�I. Consequently, the meridian
disk of the solid torus crosses @vN(B) exactly twice.

But under our assumptions above, this meridian disk in fact crosses @vN(B)
at least four times; either because there are two annuli crossed by the meridian
disk jqj �2 times each, or because there are at least four annuli crossed by the
meridian disk at least jqj �1 times each. Therefore, the essential lamination Delman
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constructs is genuine, after all non-integer (and usually, non-trivial) Dehn surgeries.
Combining this with the result of the previous section, gives us our main theorem.

Remark. In [De2], Delman extends his constructions for 2-bridge knots to other
classes of knots which can be built from rational tangles, including most pretzel
and Montesinos knots. Since these laminations exhibit the same phenomenon of
two, and often four, meridianal annuli, the same conclusions presented here hold
for these knots, as well.

Remark. By applying this approach to other laminations in 2-bridge knot exteriors,
one can extend these results to show [BW] that every manifold obtained by non-
trivial surgery on a non-torus, non-twist 2-bridge knot contains a genuine essential
lamination.

x3
The future

New constructions of essential laminations in knot complements continue to be
found (see, e.g., [Ro],[Mo]), most of which remain genuine under Dehn surgery, and
so giving similar results to those found here. But essential laminations in small
Seifert-�bered spaces also have more structure than we have exploited here, leaving
open the possibility for even further improvements.

An essential lamination L in a small Seifert-�bered space M contains a horizontal
sublamination, and, if L does not contain a torus leaf, the results of [Br2] imply
that the entire lamination can be made horizontal, hence transverse to the circle
�bering of M. If we �ll in the product complements of L with product foliations,
and lift the resulting foliation to a covering of M corresponding to a regular circle
�ber, we get a foliation transverse to the product circle �bering of an open solid
torus. The leaves [GK2] therefore look like open meridianal disks, and so if we lift
to the universal covering, we get a foliation by planes of R3 with space of leaves
(i.e., the quotient of R3 obtained by crushing each leaf to a point) equal to R. Gabai
[Ga1] has labelled such foliations (in the base 3-manifold) `tight'; Fenley [Fe1] calls
them `R-covered'..

Therefore, essential laminations in small Seifert-�bered spaces complete to foli-
ations which are tight. This gives us additional information to restrict the possible
Dehn surgeries yielding small Seifert-�bered spaces, which we can use in several
ways.

First, one could show if one has an essential lamination missing a knot, which
does not become genuine under Dehn �lling, usually does not become tight, as well.
This would amount, basically to showing that there are three lifts of leaves to the
universal covering (which are proper planes, by [GO]) for which no one separates
the other two - that would contradict space of leaves R, since in R, given three
points one separates the other two. In fact, this property is equivalent to having
space of leaves R. This suggests the

Question 1. Can the property of having space of leaves R in the universal covering
be detected in the original 3-manifold?

Gabai has pointed out that a �nite-depth foliation of depth > 0 (which is not
just a `perturbation' of a depth-0 foliation) never lifts to one with space of leaves
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R; there are lifts of the compact leaf which satisfy the condition described above.
Since Roberts' constructions [Ro] are variations of Gabai's constructions of depth-1
foliations in alternating knot complements [Ga2], it might be reasonable to expect
that those foliations do not have space of leaves R, in almost all cases. This would
no doubt also be closely related to the above question.

If a (taut) foliation contains a genuine sublamination, then the foliation certainly
cannot be tight (lifts of leaves of the sublamination would ful�ll the condition de-
scribed above - the lift of its non-I-bundle component would not be an I-bundle
in the universal covering). Most taut foliations F contain only one minimal sub-
lamination; for example, if the foliated 3-manifold M is non-Haken [Br3]. If this
sublamination is not genuine, then the foliation contains no genuine sublaminations
(by essentially the argument in section 1 of [Br1]). Unfortunately, this is not enough
to imply that the foliation is tight - Bonatti and Langevin [BL] have found an ex-
ample of a foliation in a graph manifold in M, all of whose leaves are dense in M,
which is not tight. More recently, Fenley [Fe2] has found similar examples among
(Haken) hyperbolic 3-manifolds. By [Br3], we have to pass to an in�nite covering
of M before the lifted foliation would have more than one minimal sublamination,
hence any chance of having a genuine sublamination, making it impossible to try a
`virtual' solution along these lines.

We can also try to argue that if an essential lamination, in the exterior X(K)
of a knot K does become tight under Dehn surgery, then other Dehn surgeries
su�ciently far away cannot make it tight. The second Dehn surgery can be thought
of as a Dehn surgery (on essentially the same loop) in the Dehn-surgered manifold
that has the tight foliation, along a loop missing the original lamination. This
surgery should have the e�ect of seeming to `twist up' the leaves of the lamination,
possibly destroying the property of having space of leaves R.

Question 2. Can Dehn surgery on a loop missing an essential lamination qualita-
tively change the lift of the lamination to the universal covering? What about for
the motivating example - the core of a solid torus component?

It is important to point out that Dehn surgery need not change the structure of
the lift. One can obtain small Seifert-�bered spaces by more than one Dehn surgery
on a 2-bridge knot, most notably, by six distinct surgeries on the �gure 8 knot [Th].
One can also show [BW] that three Dehn surgeries on a twist (hence 2-bridge) knot
will yield small Seifert-�bered spaces. The real problem, for such examples, then,
is to determine whether or not surgeries far away from a small Seifert one can also
yield small Seifert-�bered spaces. Because of the �gure-8 knot examples, `far away'
must mean distance ( = geometric intersection number) at least 6, in general; but
that is probably largely because of the symmetry of this knot.

Finally, there are questions related to detecting small Seifert-�bered spaces,
rather than the reverse. Are small Seifert-�bered spaces the only 3-manifolds which
only admit tight foliations? Gabai [Ga1] has asked if laminar manifolds always ad-
mit tight foliations or laminations - what we are asking is when do they also admit
something else? This would be one way of answering: if a manifold M does admit
a tight foliation, can you tell whether or not it is in fact a (small) Seifert-�bered
space? Another possible answer might come from the fact that �1(M) acts on the
space of leaves R, by its action on the universal covering of M; must this action be
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qualitatively di�erent depending on whether or not M is Seifert-�bered?
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