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1. Introduction

Let S be a semigroup with set E(S) of idempotents, and let 〈E(S)〉 denote
the subsemigroup of S generated by E(S). We say that S is an idempotent
generated semigroup if S = 〈E(S)〉. Idempotent generated semigroups have
received considerable attention in the literature. For example, an early re-
sult of J. A. Erdös [7] proves that the idempotent generated part of the
semigroup of n × n matrices over a field consists of the identity matrix and
all singular matrices. J. M. Howie [14] proved a similar result for the full
transformation monoid on a finite set and also showed that every semigroup
may be embedded in an idempotent generated semigroup. This result has
been extended in many different ways, and many authors have studied the
structure of idempotent generated semigroups. Recently, Putcha [23] gave
necessary and sufficient conditions for a reductive linear algebraic monoid
to have the property that every non-unit is a product of idempotents, sig-
nificantly generalizing the results of J.A. Erdös mentioned above.

In 1979 K.S.S. Nambooripad [17] published an influential paper about
the structure of (von Neumann) regular semigroups. Nambooripad observed
that the set E(S) of idempotents of a semigroup carries a certain structure
(the structure of a “biordered set”, or a “regular biordered set” in the case
of regular semigroups) and he provided an axiomatic characterization of
(regular) biordered sets in his paper. If E is a regular biordered set, then
there is a free object, which we will denote by RIG(E), in the category
of regular idempotent generated semigroups with biordered set E. Nam-
booripad showed how to study RIG(E) via an associated groupoid N (E).
There is also a free object, which we will denote by IG(E), in the category
of idempotent generated semigroups with biordered set E for an arbitrary
(not necessarily regular) biordered set E.

In the present paper we provide a topological approach to Nambooripad’s
theory by associating a 2-complex K(E) to each regular biordered set E.
The fundamental groupoid of the 2-complex K(E) is Nambooripad’s group-
oid N (E). Our concern in this paper is in analyzing the structure of the
maximal subgroups of IG(E) and RIG(E) when E is a regular biordered

The first author acknowledges support from NSF Grant DMS-0306506. The second au-
thor acknowledges support from the Department of Mathematics, University of Nebraska-
Lincoln.

1



2 MARK BRITTENHAM, STUART W. MARGOLIS, AND JOHN MEAKIN

set. It has been conjectured that these subgroups are free [16], and in-
deed there are several papers in the literature (see for example, [19], [18],
[16]) that prove that the maximal subgroups are free for certain classes of
biordered sets. The main result of this paper is to use these topological tools
to give the first example of non-free maximal subgroups in free idempotent
generated semigroups over a biordered set. We give an example of a regu-
lar biordered set E associated to a certain combinatorial configuration such
that RIG(E) has a maximal subgroup isomorphic to the free abelian group
of rank 2.

2. Preliminaries on Biordered Sets and Regular Semigroups

One obtains significant information about a semigroup by studying its
ideal structure. Recall that if S is a semigroup and a, b ∈ S then the Green’s
relations R,L,H,J and D are defined by aRb if and only if aS1 = bS1, aLb
if and only if S1a = S1b, aJ b if and only if S1aS1 = S1bS1, H = R ∩ L
and D = R ◦ L = L ◦ R, so that D is the join of R and L in the lattice
of equivalence relations on S. The corresponding equivalence classes of an
element a ∈ S are denoted by Ra, La,Ha, Ja and Da respectively. Recall
also that there are quasi-orders defined on S by a ≤R b if aS1 ⊆ bS1, and
a ≤L b if S1a ⊆ S1b. As usual, these induce partial orders on the set of
R-classes and L-classes respectively. The restrictions of these quasi-orders
to E(S) will be denoted by ωr and ωl respectively in this paper, in accord
with the notation in Nambooripad’s paper [17]. It is easy to see that if e and
f are idempotents of S then e ωr f (i.e. eS ⊆ fS) if and only if e = fe, that
e ωl f if and only if e = ef , that e R f if and only if e = fe and f = ef ,
and that e L f if and only if e = ef and f = fe.

Let e be an idempotent of a semigroup S. The set eSe is a submonoid in
S and is the largest submonoid (with respect to inclusion) whose identity
element is e. The group of units Ge of eSe, that is the group of elements of
eSe that have two sided inverses with respect to e, is the largest subgroup of
S (with respect to inclusion) whose identity is e and is called the maximal
subgroup of S at e.

Recall also that if e and f are idempotents of S then the natural partial
order on E(S) is defined by e ω f if and only if ef = fe = e. Thus ω =
ωr ∩ ωl. An element a ∈ S is called regular if a ∈ aSa: in that case there is
at least one inverse of a, i.e. an element b such that a = aba and b = bab.
Note that regular semigroups have in general many idempotents: if a and b
are inverses of each other, then ab and ba are both idempotents (in general
distinct). Standard examples of regular semigroups are the semigroup of
all transformations on a set (with respect to composition of functions) and
the semigroup of all n × n matrices over a field (with respect to matrix
multiplication).

We recall the basic properties of the very important class of completely
0-simple semigroup. A semigroup S (with 0) is (0)-simple if (S2 6= 0 and)
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its only ideal is S (S and 0). A (0)-simple semigroup S is completely (0)-
semigroup if S contains an idempotent and every idempotent is (0)-minimal
in the natural partial order of idempotents defined above. It is a fundamental
fact that every finite (0)-simple semigroup is completely (0)-simple.

Let S be a completely 0-simple semigroup. The Rees theorem [2, 15] states
that S is isomorphic to a regular Rees matrix semigroup M0(A,G,B,C)
and conversely that every such semigroup is completely (0)-simple. Here
A(B) is an index set for the R (L)-classes of the non-zero J -class of S and
C : B×A → G0 is a function called the structure matrix. C has the property
that for each a ∈ A there is a b ∈ B such that C(b, a) 6= 0 and for each b ∈ B
there is an a ∈ A such that C(b, a) 6= 0. We always assume that A and B
are disjoint. The underlying set of M0(A,G,B,C) is A × G × B ∪ {0} and
the product is given by (a, g, b)(a′, g′, b′) = (a, gC(b, a′)g′, b′) if C(b, a′) 6= 0
and 0 otherwise.

We refer the reader to the books of Clifford and Preston [2] or Lallement
[15] for standard ideas and notation about semigroup theory.

An E-path in a semigroup S is a sequence of idempotents (e1, e2, . . . , en)
of S such that ei (R∪L) ei+1 for all i = 1, . . . n−1. This is just a path in the
graph (E,R∪L): the set of vertices of this graph is the set E of idempotents
of S and there is an edge denoted (e, f) from e to f for e, f ∈ E if eRf or
eLf . One can introduce an equivalence relation on the set of E-paths by
adding or removing “inessential” vertices: a vertex (idempotent) ei of a path
(e1, e2 . . . , en) is called inessential if ei−1 R ei R ei+1 or ei−1 L ei L ei+1.
Following Nambooripad [17], we define an E-chain to be the equivalence
class of an E-path relative to this equivalence relation. It can be proved
[17] that each E-chain has a unique canonical representative of the form
(e1, e2, . . . , en) where every vertex is essential. We will often abuse notation
slightly by identifying an E-chain with its canonical representative.

The set G(E) of E-chains forms a groupoid with set E of objects (iden-
tities) and with an E-chain (e1, e2, . . . , en) viewed as a morphism from
e1 to en. The product C1C2 of two E-chains C1 = (e1, e2, . . . , en) and
C2 = (f1, f2, . . . , fm) is defined and equal to the canonical representative of
(e1, . . . , en, f1, . . . fm) if and only if en = f1: the inverse of (e1, e2, . . . , en) is
(en, . . . , e2, e1). We refer the reader to [17] for more detail.

For future reference we give a universal characterization of G(E) in the
category of small groupoids. Every equivalence relation R on a set X can be
considered to be a groupoid with objects X and arrows the ordered pairs of
R. There are obvious notions of free products and free products with amal-
gamations in the category of small groupoids. See [12] for details. Clearly
the objects of any groupoid form a subgroupoid whose morphisms are the
identities. We will identify the objects of a groupoid as this subgroupoid and
call it the trivial subgroupoid. The proof of the following theorem appears
in [17].
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Theorem 2.1. Let S be a semigroup with non-empty set of idempotents E.
Then G(E) is isomorphic to the free product with amalgamation L ∗E R in
the category of small groupoids.

As mentioned above, we are considering E to be the trivial subgroupoid
of G(E).

It is easy to see from the characterizations of R and L above that if
(f1, f2, . . . , fm) is the canonical representative equivalent to an E-path
(e1, e2, . . . , en), then e1e2 . . . en = f1f2 . . . fm in S, since efg = eg if eRfRg
or eLfLg. Standard results of Miller and Clifford [2] imply that
e1Re1e2 . . . enL en.

In 1972, D.G. Fitzgerald [8] proved the following basic result about the
idempotent generated subsemigroup of any semigroup.

Theorem 2.2. Let S be any semigroup with non-empty set E = E(S)
of idempotents and let x be a regular element of 〈E(S)〉. Then x can be
expressed as a product of idempotents x = e1e2 . . . en in an E-path
(e1, e2, . . . , en) of S, and hence as a product of idempotents in an E-chain.
If S is regular, then so is < E(S) >.

In 1979, Nambooripad introduced the notion of a biordered set as an
abstract characterization of the set of idempotents E of a semigroup S with
respect to certain basic products that are forced to be idempotents. We give
the details that will be needed in this paper.

Recall that if e, f ∈ E = E(S) for some semigroup S then e ωr f if and
only if fe = e, and e ωl f if and only if ef = e. In the former case, ef is
an idempotent that is R -related to e and ef ω f in the natural order on
E: similarly, in the latter case, fe is an idempotent that is L-related to e
and fe ω f . Thus in each case both products ef and fe are defined within
E, i.e. such products of idempotents must always be idempotent. Products
of these type are referred to as basic products. The partial algebra E with
multiplication restricted to basic products is called the biordered set of S.

Nambooripad [17] characterized the partial algebra of idempotents of a
(regular) semigroup with respect to these basic products axiomatically. We
refer the reader to Nambooripad’s article [17] for the details. The axioms are
complicated but do arise naturally in mathematics. For example, Putcha
proved that pairs of opposite parabolic subgroups of a finite group of Lie
type have the natural structure of a biordered set [22]. We will need one
more concept, the sandwich set S(e, f) of two idempotents e, f of S.

If e, f are (not necessarily distinct) idempotents of a semigroup S, then
S(e, f) = {h ∈ E|ehf = ef, fhe = h} is called the sandwich set of e and f
(in that order). It is straightforward to prove that if h ∈ S(e, f), then h is
an inverse of ef . In particular, S(e, f) is non-empty for any e, f if S is a
regular semigroup. Nambooripad also gave an order theoretic definition of
the sandwich set, but we will not need that in this paper.

As mentioned above, Nambooripad gave a definition of a biordered set as
a partial algebra satisfying a collection of axioms. We don’t need the details
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of these axioms because of the following theorems. He called a biordered set
regular if the (axiomatically defined) sandwich set of any pair of idempotents
is non-empty.

Theorem 2.3. (Nambooripad [17]) The set E of idempotents of a regu-
lar semigroup is a regular biordered set relative to the basic products in E.
Conversely, every regular (axiomatically defined) biordered set arises as the
biordered set of idempotents of some regular semigroup.

This was extended to non-regular semigroups and non-regular biordered
sets by Easdown [6]. We will give a more precise statement of Easdown’s
result in the next section.

3. Free idempotent generated semigroups on biordered sets

If E is a biordered set we denote by IG(E) the semigroup with presenta-
tion

IG(E) = 〈E : e2 = e for all e ∈ E and e.f = ef if ef is a basic product
in E〉.

If E is a regular biordered set, then we define

RIG(E) = 〈E : e2 = e for all e ∈ E and e.f = ef if ef is a basic product
in E and ef = ehf for all e, f ∈ E and h ∈ S(e, f)〉

The semigroup IG(E) is called the free idempotent generated semigroup
on E and the semigroup RIG(E) is called the free regular idempotent gen-
erated semigroup on E. This terminology is justified by the following results
of Easdown [6], Nambooripad [17] and Pastijn [20].

Theorem 3.1. [6] The biordered set of idempotents of IG(E) is E. In
particular, every biordered set is the biordered set of some semigroup. If
S is any idempotent generated semigroup with biordered set of idempotents
isomorphic to E then the natural map E → S extends uniquely to a homo-
morphism IG(E) → S.

Theorem 3.2. [17, 20] If E is a regular biordered set then RIG(E) is a
regular semigroup with biordered set of idempotents E. If S is any regu-
lar idempotent generated semigroup with biordered set biorder isomorphic
to E, then the natural map E → S extends uniquely to a homomorphism
RIG(E) → S.

There is an obvious natural morphism φ : IG(E) → RIG(E) if E is a
regular biordered set. However, we remark that this is not an isomorphism,
and the semigroups IG(E) and RIG(E) can be very different when E is a
regular biordered set. Also, the regular elements of IG(E) do not form a
subsemigroup in general, even if E is a regular biordered set.

The following simple examples illustrate these facts.

Example 1. Let E be the (non-regular) biordered set consisting of two
idempotents e and f with trivial quasi-orders ωr and ωl. Clearly the rules
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e2 → e, f2 → f constitute a terminating confluent rewrite system for the
semigroup IG(E). Canonical forms for words in IG(E) are of the form
efef . . . e or efef . . . f or fefe . . . f or fefe . . . e. Clearly IG(E) is an infi-
nite semigroup with exactly two idempotents (e and f).
Example 2. Let F be the biordered set E above with a zero 0 adjoined.
Thus F is a three-element semilattice, freely generated as a semilattice by
e and f . It is easy to see that RIG(F ) = F since ef = e0f = fe = f0e =
0 from the presentation for RIG(F ) and since 0 ∈ S(e, f). But IG(F )
is IG(E)0, where IG(E) is the semigroup in Example 1. Thus IG(F ) is
infinite, but RIG(F ) is finite.

We will give more information about the relationship between IG(E)
and RIG(E), for E a regular biordered set, at the end of this section. In
particular, we will show that the regular elements of IG(E) are in one-
one correspondence with the elements of RIG(E) (even though the regular
elements of IG(E) do not necessarily form a subsemigroup of IG(E)).

Nambooripad studied the free regular idempotent generated semigroup
semigroup RIG(E) on a regular biordered set via his general theory of “in-
ductive groupoids” in [17]. If S is a regular semigroup, then Nambooripad
introduced an associated groupoid N (S) (that we refer to as the Namboori-
pad groupoid of S) as follows. The set of objects of N (S) is the set E = E(S)
of idempotents of S. The morphisms of N (S) are of the form (x, x′) where
x′ is an inverse of x: (x, x′) is viewed as a morphism from xx′ to x′x and the
composition of morphisms is defined by (x, x′)(y, y′) = (xy, y′x′) if x′x = yy′

(and undefined otherwise). With respect to this product, N (S) becomes a
groupoid, which in fact is endowed with much additional structure, making
it an inductive groupoid in the sense of Nambooripad [17]. An inductive
groupoid is an ordered groupoid whose identities (objects) admit the struc-
ture of a regular biordered set E, and which admits a way of evaluating
products of idempotents in an E-chain as elements of the groupoid. There
is an equivalence between the category of regular semigroups and the cat-
egory of inductive groupoids. We refer the reader to Nambooripad’s paper
[17] for much more detail. In particular, it follows easily from Namboori-
pad’s results that the maximal subgroup of S containing the idempotent e
is isomorphic to the local group of N (S) based at the object (identity) e
(i.e. the group of all morphisms from e to e in N (S)).

In his paper [17], Nambooripad also showed how to construct the inductive
groupoid N (RIG(E)) associated with the free regular idempotent generated
semigroup on a regular biordered set E directly from the groupoid of E-
chains of E. We review this construction here.

Let E be a regular biordered set. An E-square is an E -path (e, f, g, h, e)
with e R f L g R h L e or (e, h, g, f, e) with e L h R g L f R e. We draw

the square as:

[

e f
h g

]

. An E-square is degenerate if it is of one of the

following three types:
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[

e e
e e

] [

e f
e f

] [

e e
f f

]

Unless mentioned otherwise, all E-squares will be non-degenerate.

An idempotent t = t2 ∈ E left to right singularizes the E-square

[

e f
h g

]

if te = e, th = h, et = f and ht = g where all of these products are defined
in the biordered set E. Right to left, top to bottom and bottom to top
singularization is defined similarly and we call the E-square singular if it has
a singularizing idempotent of one of these types. Note that since te = e ∈ E
if and only if eωrt, all of these products can also be defined in terms of the
order structure as well.

The importance of singular E-squares is given by the next lemma.

Lemma 3.3. Let

[

e f
h g

]

be a singular E-square in a semigroup S.Then

the product of the elements in the E-cycle (e, f, g, h, e) satisfies efghe = e.

Proof. Let t = t2 left to right singularize the E-square

[

e f
h g

]

. Then

in any idempotent generated semigroup with biordered set E, efghe = fh
follows from the basic R and L relations of E. Furthermore, fh = eth =
eh = e which follows from the definition of left to right singularization. The
other cases of singularization are proved similarly. �

In order to build the inductive groupoid of RIG(E), we must therefore
identify any singular E-cycle of G(E) from an idempotent e to itself with e.
This is because any inductive groupoid with biordered set E is an image of
G(E) by Nambooripad’s theory [17]. This leads to the following definition.
For two E-chains C = (e1, e2, . . . , en) and C ′ = (f1, f2, . . . , fm) define C →
C ′ if there are E-chains C1 and C2 and a singular E-square γ such that
C = C1C2 and C ′ = C1γC2 and let ∼ denote the equivalence relation on
G(E) induced by →. The next theorem follows from [17] Theorem 6.9,
6.10 and ensures that the quotient groupoid G(E)/∼ defined above has an
inductive structure and is isomorphic to the inductive groupoid of RIG(E).

Theorem 3.4. (Nambooripad [17]) If E is a regular biordered set, then
N (RIG(E)) ∼= G(E)/∼.

It is convenient to provide a topological interpretation of this theorem of
Nambooripad. We remind the reader that just as groups are presented by a
set of generators and a set of words over the generating set as relators (giving
the group as a quotient of the free group on the generating set), groupoids
are presented by a graph and a set of cycles in the graph as relators (giving
the groupoid as a quotient of the free groupoid on the graph). See [12] for
more details.

It follows from Theorem 2.1 and Theorem 3.4 that we have the following
presentation for N (RIG(E)) ∼= G(E)/∼.

Generators: The graph with vertices E and edges the relation R ∪ L.
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Relators: There are two types of relators:

(1) ((e, f), (f, g), (g, e)) = 1e if e R f R g or e L f L g

(2) ((e, f), (f, g), (g, h), (h, e)) = 1e if

[

e f
h g

]

is a singular E-square.

We will always assume that there are no trivial relators in the list above.
This means that for relators of type (1) all three elements e, f, g are distinct
and for relators of type (2), all four elements e, f, g, h are distinct.

If E is a regular biordered set we associate a 2-complex K(E) which is
the analogue of the presentation complex of a group presentation. The 1-
skeleton of K(E) is the graph (E,R ∪ L) described above. Since R and L
are symmetric relations we consider the underlying graph to be undirected
in the usual way. The 2-cells of K(E) are of the following types:

(1) if e R f R g or e L f L g for e, f, g ∈ E then there is a 2-cell with
boundary edges (e, f), (f, g), (g, e).

(2) all singular E-squares bound 2-cells.
We note that our 2-complexes are combinatorial objects and we follow

the notation of [25], [28].
We denote the fundamental groupoid of a 2-complex K by π1(K): the

fundamental group of K based at v will be denoted by π1(K, v). The fol-
lowing corollary is an immediate consequence of Nambooripad’s work and
the definition of the fundamental groupoid of a 2-complex (see, for example,
[12]).

Corollary 3.5. If E is a regular biordered set, then π1(K(E)) ∼= G(E)/∼
and hence π1(K(E)) ∼= N (RIG(E)).

It follows that the maximal subgroup of RIG(E) containing the idempo-
tent e is isomorphic to the fundamental group of K(E) based at e. The next
theorem shows that there is a one to one correspondence between regular
elements of IG(E) and RIG(E) if E is a regular biordered set and that
for every e ∈ E, the maximal subgroup at e in IG(E) is isomorphic to the
maximal subgroup at e in RIG(E).

Theorem 3.6. Let E be a regular biordered set. Then the natural map
φ : IG(E) → RIG(E) is a bijection when restricted to the regular elements
of IG(E). That is, for each element r ∈ RIG(E) there exists a unique regular
element s ∈ IG(E) such that φ(s) = r. In particular, the maximal subgroups
of IG(E) and RIG(E) are isomorphic.

Proof. It follows from Fitzgerald’s theorem, Theorem 2.2 that every element
of RIG(E) is the product of the elements in an E chain. But it follows from
the Clifford-Miller theorem [2] that the product of an element in an E-chain
is a regular element in any idempotent generated semigroup with biordered
set E. It follows immediately that φ restricts to a surjective map from the
regular elements of IG(E) to RIG(E).

If u and v are regular elements of IG(E), then there are E-chains
(e1, e2, . . . , en) and (f1, f2, . . . , fm) such that u = e1e2 . . . en and
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v = f1f2 . . . fm in IG(E). Suppose that φ(u) = φ(v). Clearly, on apply-
ing the morphism φ, e1e2 . . . en = f1f2 . . . fm in RIG(E). We mentioned
previously that it follows from the Clifford-Miller theorem [2] that e1Rf1

and enLfm. Thus without loss of generality, we may assume that e1 = f1

since e1f1f2 . . . fm = f1f2 . . . fm in IG(E), and similarly we may assume
that en = fm. Applying [17] Lemma 4.11 and Theorem 3.4, it follows
that (e1, e2, . . . , en) ∼ (f1, f2, . . . , fm). Thus it is possible to pass from
(e1, e2, . . . , en) to (f1, f2, . . . , fm) by a sequence of operations of two types:

(a) inserting or deleting paths of length 3 corresponding to R or L related
idempotents; and

(b) inserting or deleting E-cycles corresponding to singular E-squares.
Note that if (e, f, g, h, e) is a singular E-square then efghe = e in any

semigroup S with biordered set E by Lemma 3.3. It follows easily that if
(g1, g2, . . . , gp) is obtained from (e1, e2, . . . , en) by one application of an oper-
ation of type (a) or (b) above, then e1e2 . . . en = g1g2 . . . gp in any semigroup
with biordered set E, and in particular this is true in IG(E). It follows by
induction on the number of steps of types (a) and (b) needed to pass from
(e1, e2, . . . , en) to (f1, f2, . . . , fm) that u = e1e2 . . . en = f1f2 . . . fm = v in
IG(E), so φ is one-to-one on regular elements, as desired.

To prove the final statement of the theorem, note that elements of the
maximal subgroup of IG(E) or RIG(E) containing e come from E-chains
that start and end at e, since
e1 R e1e2 . . . en L en for any E-chain (e1, e2, . . . , en). This shows that the
map φ is surjective on maximal subgroups: the first part of the theorem
shows that it is injective on maximal subgroups.

�

4. Connections between the Nambooripad Complex and the

Graham-Houghton Complex

In this section we use the Bass-Serre theoretic methods of [10] to study
the local groups of G(E) and N (E). The local group of a groupoid G at the
object v is the group of self morphisms G(v, v). For G(E) we give a rapid
topological proof of a result of Namboopripad and Pastijn [18] who showed
that the local groups of G(E) are free groups. By applying [10] we are
lead directly to the graphs considered by Graham and Houghton [9, 13] for
studying completely 0-simple semigroups. We put a structure of a complex
on top of the Graham-Houghton graphs in order to have tools to study the
vertex subgroups of N (E), which by Theorem 3.4 and Theorem 3.6 are the
maximal subgroups of IG(E) and RIG(E) when E is a regular biordered
set.

Throughout this section, E will denote a regular biordered set. By The-
orem 3.2 E is isomorphic to the biordered set of idempotents of RIG(E)
and we will use this identification throughout the section as well. Thus, we
will refer to the elements of E as idempotents and talk about their Green
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classes within RIG(E). We have seen in Theorem 2.1 that G(E) decomposes
as the free product with amalgamation G(E) =L ∗E R, where by abuse of
notation, E denotes the trivial subgroupoid. Since L and R also have the
same objects as each other and as E, we can use the methods of [10] to
study the maximal subgroup of G(E), since this paper was concerned with
amalgams of groupoids in which the intersection of the two factors contains
all the identity elements.

For every such amalgam of groupoids G = A∗U B, [10] associates a graph
of groups in the sense of Bass-Serre Theory [27] whose connected components
are in one to one correspondence with the connected components of G and
such that the fundamental group of a connected component is isomorphic
to the local group of the corresponding component of G.

First note that there is a one to one correspondence between the L (R)
classes of E and the L (R) classes of RIG(E). This is because every L
(R) class of RIG(E) has an idempotent and the L (R) relation restricted
to idempotents can be defined by basic products. We abuse notation by
identifying an L (R) class of E with the L (R) class of RIG(E) containing
it.

We now describe explicitly the graph of groups associated to G(E). For
more details, see [10]. The graph of groups G of G(E) consists of the following
data: The set of vertices is the disjoint union of the L and R classes of E
and its positive edges are the elements of E. If e ∈ E, its initial edge is
its L-class and its terminal edge is its R-class. That is, there is a unique
positive edge from an L-class L to an R-class R if and only if the H-class
L ∩ R of RIG(E) contains an idempotent. Each vertex group of G is the
trivial group. This is an exact translation for G(E) of the graph of groups
defined for an arbitrary amalgam on page 46 of [10].

Since the vertex groups of G are trivial, we can consider G to be a graph
in the usual sense. Therefore its fundamental group is a free group and we
have the following theorem of Namboopripad and Pastijn [18].

Theorem 4.1. Every local subgroup of G(E) is a free group.

Proof. It follows from Theorem 3 of [10] that for each element e ∈ E the
local subgroup of G(E) at e is isomorphic to the fundamental group of G

based at the L-class of e. Since the latter group is free by the discussion
above, the theorem is proved.

�

In the case that a connected component of G(E) has a finite number of
idempotents, the rank of the free group will be the Euler characteristic of
the corresponding component of G, that is, the number of edges of the graph
minus the number of vertices plus 1. Thus if the connected component of
e ∈ E of G(E) has m R-classes, n L-classes and k idempotents, then the
free group G(E)(e, e) has rank k − (m + n) + 1.

All the calculations of maximal subgroups of RIG(E) or IG(E) that
have appeared in the literature [16, 18, 20] have been restricted to cases of
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biordered sets that have no non-degenerate singular squares. In this case it
follows from Theorem 3.4 that G(E) is isomorphic to N (E). Since the local
groups of N (E) are isomorphic to the maximal subgroups of RIG(E) we
have the following result of Nambooripad and Pastijn [18].

Theorem 4.2. If E is a biordered set that has no non-degenerate singular
squares, then every subgroup of RIG(E) is free.

Nambooripad and Pastijn’s proof of theorem 4.2 uses combinatorial word
arguments. A topological proof of theorem 4.2 in the special case that the
(not necessarily regular) biordered set has no nontrivial biorder ideals was
given by McElwee [16]. The graph that McElwee uses is the same as ours in
this case, but without reference to the general work of [10] or the connection
with the Graham-Houghton graph [9, 13] that we discuss below. There are a
number of interesting classes of regular semigroups whose biordered sets have
no non-degenerate singular squares including locally inverse semigroups. See
[18] for more examples.

Connected components of the graph G associated to G(E) defined above
have arisen in the literature in connection with the theory of finite 0-simple
semigroups and in particular with the theory of idempotent generated sub-
semigroups of finite 0-simple semigroups. Finite idempotent generated 0-
simple semigroups have the property that all non-zero idempotents are con-
nected by an E-chain. This follows from the Clifford-Miller theorem [2].
Thus the graph G corresponding to the biordered set of a finite 0-simple
semigroup has a trivial component consisting of 0 and one other connected
component. The graph defined independently by Graham and Houghton
[9, 13] associated to a finite 0-simple semigroup is exactly the graph that
arises from Bass-Serre theory associated to G(E) that we have defined above.
Graham and Houghton did not note the connection to Bass-Serre theory.
A number of papers have given connections between completely 0-simple
semigroups, the theory of graphs and algebraic topology [9, 13], [21]. The
monograph [24] gives an updated version of these connections.

We now add 2-cells to G of the graph associated to G(E), one for each

singular square

[

e f
h g

]

. Given this square and recalling that the positive

edges of G are directed from the L-class of an idempotent to its R-class we
sew a 2-cell onto G with boundary ef−1gh−1. We call this 2-complex the
Graham-Houghton complex of E and denote it by GH(E).

We note two important properties of GH(E). Its 1-skeleton is naturally
bipartite as each edge runs between an L-class and an R-class. Furthermore
GH(E) is a square complex in that each of its cells is a square bounded by
a 4-cycle.

We now prove that the fundamental group of the connected component
of GH(E) containing the vertex Le of an idempotent e ∈ E is isomorphic
to the fundamental group of the Nambooripad complex K(E) containing
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the vertex e. We will then be able to use GH(E) to compute the maximal
subgroups of RIG(E).

As we have seen above, the Nambooripad complex K(E) has vertices
E, the idempotents of S, edges (e, f) whenever e R f or e L f , and two
types of two cells: one triangular 2-cell (e, f)(f, g)(g, e) for each unordered
triple (e, f, g) of distinct elements satisfying e R f R g or e L f L g,
and one square 2-cell (e, f)(f, g)(g, h)(h, e) for each non-degenerate singular

E-square

[

e f
h g

]

.

The Graham-Houghton complex GH(E) has one vertex for each R or
L-class of E, an edge labelled by e ∈ E between Ra and Lb if e ∈Ra ∩ Lb

(giving a bipartite graph), and square 2-cells attached along (e, f, g, h) when
[

e f
h g

]

is a non-degenerate singular E-square.

We now describe a sequence of transformations of complexes which starts
with GH(E) and ends with K(E). Each step, we shall see, does not change
the isomorphism class of the fundamental groups of the complex. This will
imply that GH(E) and K(E) have isomorphic fundamental groups. The
basic idea is that the vertices of K(E) are the edges of GH(E), and the
vertices of GH(E) are, in some sense, the edges of K(E). The process
basically “blows up” the vertices of GH(E) to introduce the edges of K(E),
and then crushes the original edges of GH(E) to points to create the vertices
of K(E). The blow-up process introduces the triangular 2-cells needed for
K(E), and the crushing process turns the square 2-cells of GH(E) into the
square 2-cells of K(E). All of the topological facts used below may be found,
for example, in [11, 28]. More precisely, in the theorem below, we prove that
K(E) is the 2-skeleton of a complex that is homotopy equivalent to GH(E)
and in particular, they have isomorphic fundamental groups at each vertex.

Theorem 4.3. π1(K(E), e) is isomorphic to π1(GH(E),Le) for each e ∈ E.

Proof. The first step is to blow up each vertex R or L of GH(E) to an n-
simplex, where n is the valence of the vertex. Figure 1 shows the essential
details. The basic idea is that the vertex R or L becomes the n-simplex,
each edge of GH(E) incident to R or L becomes an edge incident to a
distinct vertex of the n-simplex, and any square 2-cell incident to the vertex
receives an added edge of the n-simplex in its boundary, joining the two
vertices which its original pair of edges are now incident to. Carrying out
this process for all of the original vertices results in a complex which we will
call Q1. Note that Q1 is homotopy equivalent to GH(E), since GH(E) may
be obtained from Q1 by crushing each n-simplex σn to a point (literally,
taking the quotient complex Q1/σ

n). Since each n-simplex is a contractible
subcomplex of Q1, the quotient map Q1 → Q1/σ

n is a homotopy equivalence
([11] Proposition 0.17); the result then follows by induction, since Q1 with
every one of the introduced simplices crushed to points is isomorphic to
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Figure 1

Figure 2

GH(E). The original square 2-cells of GH(E) have now become octagons
in Q1.

The complex Q1 has a pair of vertices for each original edge of GH(E),
that is, for each element e ∈ E. One of the vertices lies in the 2-skeleton
of the n-simplex corresponding to the L-class of e, and the other in the
corresponding R-class. Our second step is to crush each of these original
edges from GH(E) to points, resulting in a complex which we will call Q2;
see Figure 2. Each such edge forms a contractible subcomplex of Q1, since
its vertices are distinct - the 1-skeleton of GH(E) is a bipartite graph, so the
vertices of each edge lie on distinct n-simplices - so quotienting out by each
edge is again a homotopy equivalence. Q2 is therefore homotopy equivalent
to Q1. The vertices of Q2 are now in 1-to-1 correspondence with E, since
there is one vertex for each edge in GH(E). The edges of Q2 are precisely
the edges in the n-simplices, so there is an edge from e to f precisely when
e and f lie in the same L- or R-class, which are precisely the edges of the
Nambooripad complex. Under the quotient map the octagonal 2-cells of
Q1 have become square 2-cells, whose boundaries are edge paths through
the vertices e, f, g, h given by the edges in the boundaries of the square 2-
cells of GH(E). That is, they are precisely the singular E-squares of the
Nambooripad complex.
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Finally, the Nambooripad complex K(E) is isomorphic to the 2-skeleton

Q
(2)
2 ⊆ Q2 of Q2. That is, Q

(2)
2 consists of the 1-skeleton, which is the 1-

skeleton of K(E), together with the singular squares and all of the 2-faces of
the n-simplices, which are precisely the triangular 2-cells of K(E) for e, f, g
three distinct elements in the same L- or R-class. Having the same vertices,
edges, and 2-cells, the two 2-complexes are therefore isomorphic.

Since the fundamental groupoid of the 2-skeleton of a complex is isomor-
phic to the fundamental groupoid of the complex, we have

π1(K(E)) ∼= π1(Q
(2)
2 ) ∼= π1(Q2) ∼= π1(Q1) ∼= π1(GH(E)),

as desired.
�

5. An example of a free idempotent generated semigroup with

non-free subgroups

In this section we present an example of a finite regular biordered set
E such that Z × Z, the free Abelian group of rank 2, is isomorphic to a
maximal subgroup of RIG(E). This is the first example of a subgroup of a
free idempotent generated semigroup that is not a free group.

Before presenting the example, we give more details on the connection
between bipartite graphs and completely 0-simple semigroups. This will
help us explain how we present our example.

Let S = M0(A, 1, B,C) be a combinatorial completely 0-simple semi-
group. That is, the maximal subgroup is the trivial group 1. Thus we can
represent elements as pairs (a, b) ∈ A×B with product (a, b)(a′, b′) = (a, b′)
if C(b, a′) 6= 0 and 0 otherwise. As in the general case of the Graham-
Houghton graph that we described in the previous section, we associate a
bipartite graph Γ(S) to S. The vertices of Γ(S) are A ∪ B (where as usual,
we assume A ∩ B is empty). There is an edge between b ∈ B and a ∈ A if
and only if C(b, a) = 1. Clearly Γ(S) is a bipartite graph with no isolated
vertices.

Conversely, let Γ be a bipartite graph with vertices the disjoint union
of two sets A and B and no isolated vertices. We then have the incidence
matrix C = C(Γ) : B × A → {0, 1} with C(b, a) = 1 if and only if {b, a} is
an edge of Γ. As usual we write C as a {0, 1} matrix with rows labelled by
elements of B and columns labelled by elements of A. Define S(Γ) to be the
Rees matrix semigroup S(Γ) = M0(A, 1, B,C(Γ)). Then it follows from the
fact that Γ has no isolated vertices that S(Γ) is a combinatorial 0-simple
semigroup. Clearly, these assignments give a one to one correspondence be-
tween combinatorial 0-simple semigroups and directed bipartite graphs with
no isolated vertices. Isomorphisms of graphs are easily seen to correspond
to isomorphisms of the corresponding semigroup and vice versa.

We now explain the idea of our example. We will define a bipartite graph
Γ that embeds on the surface of a torus. The graph will represent the one
skeleton of a square complex. We will then define a finite regular semigroup
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S that has Γ as the bipartite graph corresponding to a completely 0-simple
semigroup that is an ideal of S and such that if we add the singular squares
of the biordered set E(S) as 2-cells to Γ (in the language of the previous
section, we build the Graham-Houghton complex), we obtain a complex that
has the fundamental group of the torus, that is, Z×Z as maximal subgroup.

We begin by drawing the graph Γ in Figure 3.

L1 L1

L2 L2

L3

L3

L4

L4

L5

L6

L7

L8

R1 R1

R1R1

R2 R2

R3

R3

R4

R5 R6

R7

R8

Figure 3. The graph Γ

We call the colors of the bipartition R and L to remind the reader of the
Green relations R and L (but if the reader insists, s/he can think of them as
Red and bLue). Thus there are 16 vertices in the graph and 32 edges. Figure
3 is drawn in a way that the graph is really drawn on the torus obtained by
identifying the top of the graph with the bottom and the left side with the
right side.

Before continuing we define the incidence matrix of Γ. For our purposes, it
is more convenient to write the transpose of the incidence matrix. Thus the
matrix in figure 4 has rows labelled by R1, . . . , R8 and columns labelled by
L1, . . . , L8. In particular, the matrix written this way defines the biordered
set of the 0-simple semigroup S(Γ) corresponding to Γ. That is, idempotents
correspond to the H classes with entries 1, the R relation corresponds to
being idempotents in the same row and the L relation corresponds to being
idempotents in the same column.
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1 1 1 1 0 0 0 0
1 1 0 0 0 1 0 1
0 0 1 1 1 0 1 0
1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1
0 1 0 1 0 1 1 0
1 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1

























Figure 4. The transpose of the incidence matrix of the
graph Γ

Now consider the 2-complex one obtains by sewing on 2-cells correspond-
ing to the 16 visual 1 by 1 squares that we see in the diagram of Γ. Notice
that after identifying the graph on the surface of a torus, there are 24 4-cycles
in the graph. There are the 16 4-cycles bounding 2-cells in our complex (such
as R1, L3, R4, L1) that we see in figure 3: there are also the 8 4-cycles (such
as R1, L3, R3, L4) that are obtained when we fold Γ into a torus, but these
4-cells do not bound cells in our complex. Clearly the fundamental group
of this complex is Z × Z. We have simply drawn subsquares on the usual
representation of the torus as a square with opposite sides identified. By
killing off these corresponding 16 4-cycles we have a space homeomorphic to
the torus and thus its fundamental group is Z × Z.

Furthermore, each of the 16 visual 1 by 1 squares in the diagram of the
graph Γ corresponds to an E-square in the biordered set of the 0-simple
semigroup S(Γ) corresponding to Γ. Thus if we can find a regular semi-
group S that has the biordered set corresponding to S(Γ) as a connected
component and also has exactly the 16 visible squares as the singular squares
in this component, it follows from the results of the previous section that
the maximal subgroup of the connected component corresponding to Γ in
RIG(E(S)) is Z × Z. We proceed to construct such a regular semigroup.

Let X = {L1, . . . , L8}. The semigroup S will be defined as a subsemigroup
of the monoid of partial functions acting on the right of X. Let C be the
transpose of the matrix in figure 4. Thus C is the structure matrix of
the 0-simple semigroup S(Γ). To each element s = (Ri, Lj) ∈ S(Γ) we
associate the partial constant function fs : X → X defined by Lxfs = Lj

if C(Lx, Ri) = 1 and undefined otherwise. In the language of semigroup
theory, fs is the image of s under the right Schutzenberger representation
of S(Γ) [1, 24].

The semigroup generated by {fs|s ∈ S(Γ)} is isomorphic to S(Γ). This
can be verified by direct computation by showing that for all s, t ∈ S(Γ),
fsft = fst, (where st is the product of s and t in S(Γ)) and that the as-
signment s 7→ fs is one to one. This follows directly from the definition of
fs above. Alternatively, one can verify this by noting as we did above that
the assignment of s to fs is the right Schutzenberger representation. The
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structure matrix of S(Γ), that is, the transpose of the matrix in figure 4,
has no repeated rows and columns and this implies that both the right and
left Schutzenberger representations are faithful [1, 24].

Now we define two more functions e, k by the following tables.

e =

[

L1 L2 L3 L4 L5 L6 L7 L8

L1 L6 L3 L7 L3 L6 L7 L1

]

k =

[

L1 L2 L3 L4 L5 L6 L7 L8

L4 L2 L2 L4 L5 L5 L8 L8

]

Let S be the semigroup generated by {e, k, fs|s ∈ S(Γ)}. We claim that S
is the semigroup that has the properties we desire. Notice that e and k are
idempotents and that S(Γ) is generated by its idempotents (this is known
to be equivalent to the graph Γ being connected [9, 17]), so in fact, S is an
idempotent generated semigroup.

The subsemigroup T generated by {e, k} has by direct computation 8 el-
ements {e, k, (ek), (ke), (eke), (kek), h = (ek)2, f = (ke)2}. This semigroup
consists of functions all of rank 4 and is a completely simple semigroup
whose idempotents are e, f, k, h. We claim that TS(Γ)∪ S(Γ)T ⊆ S(Γ). To
see this we first note that for (Ri, Lj) ∈ S(Γ), we have (Ri, Lj)t = (Ri, Ljt)
for t ∈ {e, k}. Therefore S(Γ)T ⊆ S(Γ) follows by induction on the length
of a product of elements in {e, k}.

We now list how e and k act on the left of S(Γ). In the charts below, we
note, for t ∈ {e, k} and (Ri, Lj) ∈ S(Γ), that t(Ri, Lj) = (tRi, Lj) for the
left action Ri 7→ tRi listed here. Again, all of this can be verified by direct
computation.

e :

[

R1 R2 R3 R4 R5 R6 R7 R8

R4 R2 R3 R4 R3 R6 R2 R6

]

k :

[

R1 R2 R3 R4 R5 R6 R7 R8

R1 R5 R7 R8 R5 R1 R7 R8

]

For readers who know the terminology, we have listed the images of T
in the left Schutzenberger representation on S(Γ) [1, 24]. Our claim that
TS(Γ)∪S(Γ)T ⊆ S(Γ) follows from these charts by induction on the length
of a product from T . It follows that S is the disjoint union of T and S(Γ).
Thus S is a regular semigroup with 3 J classes- one of them being T and
the other 2 coming from S(Γ) (its unique non-zero J -class and 0). S(Γ) is
the unique 0-minimal ideal of S. The order of S is 73 and the order of E(S)
is 37.

We now look at the biorder structure on E(S). We summarize the usual
idempotent order relation in figure 5.

We explain the symbols in this diagram. Each symbol represents an
idempotent in T according to figure 6.

An entry of a symbol in a box in figure 5 denotes a relation in the usual
idempotent order. For example, the idempotent (R1, L1) of S(Γ) is below
f in the idempotent order. For example it follows from the diagram that
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L1 L2 L3 L4 L5 L6 L7 L8

R1

R2

R3

R4

R5

R6

R7

R8

Figure 5. The idempotent order on E(S)

Idempotent Symbol
h �

e •
k △
f ∇

Figure 6

(R2, L1) <L f but that (R2, L1) is not below f in the idempotent order. The
other relations in the regular biordered set E(S) can be computed directly
in S. For example, f(R2, L1) = (R7, L1), k(R2, L2) = (R5, L2), etc.

The partial order on E(S) has many pleasant properties. For example,
each of the idempotents in T is above exactly 8 idempotents in S(Γ) and
every idempotent in S(Γ) is below exactly one idempotent in T . The 8
idempotents in S(Γ) below a given idempotent in T form an E-cycle. Thus
the idempotents in S(Γ) decompose into the disjoint union of 4 E-cycles of
length 8. Below we give a more geometric definition of the semigroup S
which will help explain some of these properties.

Finally, in figure 7, we give the precise information on which idempotents
in T singularize squares in E(S(Γ)). Again, all of this can be verified by
direct computation.
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L1 L1

L2 L2

L3

L3

L4

L4

L5

L6

L7

L8

R1 R1

R1R1

R2 R2

R3

R3

R4

R5 R6

R7

R8

Figure 7. Singularization of E-squares

The explanation of figure 7 is as follows. An entry in a square of the sym-
bol of an idempotent from T indicates that that idempotent singularizes
the corresponding 2 × 2 rectangular set in E(S). For example, the square,
[

(R1, L1) (R1, L3)
(R4, L1) (R4, L3)

]

, which is the square represented in the top left por-

tion of figure 7 is singularized (bottom to top) by f and (top to bottom) by
e. The diligent reader can verify all that we claim by direct computation in
E(S). In particular, exactly the 16 squares that we desire to be singular-
ized in S(Γ) are the ones singularized in S and therefore the free (regular)
idempotent semigroup on the biordered set E(S) has Z × Z as a maximal
subgroup for the connected component corresponding to Γ as explained at
the beginning of this section. This completes our first description of S. We
now give a more geometric description of the semigroup S.

5.1. Incidence structures and affine geometry over Z2. In this sub-
section we show that the semigroup S discussed above arises from a com-
binatorial structure related to affine 3-space over Z2. We first recall some
connections between incidence structures in the sense of combinatorics and
finite 0-simple semigroups.

Up to now, we have used the tight connection between bipartite graphs
and 0-simple semigroups over the trivial group to build our example. As is
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L1 (0,0,0)
L2 (1,0,0)
L3 (0,1,0)
L4 (1,1,0)
L5 (0,1,1)
L6 (1,0,1)
L7 (1,1,1)
L8 (0,0,1)

Figure 8. The points of the structure

well known, {0, 1}-matrices arise naturally to code information about other
combinatorial structures besides bipartite graphs.

An incidence system is a pair D = (V,B) where V is a (usually finite)
set of points and B is a list of subsets of V called blocks. We allow for the
possibility that a block, that is a certain subset of V , can appear more than
once in the list B. The incidence matrix of D is the |B| × |V | matrix ID

(we will use the elements of B and V to name rows and columns) such that
ID(b, v) = 1 if v ∈ b and 0 otherwise, where b ∈ B and v ∈ V . Sometimes,
the transpose of this matrix is called the incidence matrix, but it is more
convenient for our purposes to define things this way.

The semigroup S(D) associated with D is the Rees matrix semigroup
M0(B, 1, V, C) where C is the transpose of ID. It is straightforward to
see that S(D) is 0-simple if and only if the empty set is not a block and
every point belongs to some block. We make these assumptions throughout.
Conversely, it is easy to see that the transpose of the structure matrix of
a combinatorial completely 0-simple semigroup is an incidence system with
these two properties.

For example, if we consider the matrix in figure 4 as an incidence system,
the points are {L1, . . . , L8}. The blocks are R1 = {L1, L2, L3, L4}, R2 =
{L1, L2, L6, L8},etc.

Now we show that this incidence system can be coordinatized as a certain
affine configuration over the field of order 2 and that the semigroup S can
be faithfully represented by affine partial functions that are “continuous”
with respect to this structure in the sense of [3, 4, 5].

Let F2 be the field of order 2 and let V = F 3
2 be 3-space over F2. Consider

the set of planes through the origin (i.e. 2 dimensional subspaces of V ) that
do not contain the vector (1, 1, 1). An elementary counting argument shows
that there are 4 such planes. We let B be the set of these 4 planes plus
their 4 translates by the vector (1,1,1). Therefore, B has 8 elements. We
claim that by suitably ordering the points in V and the planes in B, the
incidence matrix of (V,B) is the matrix in figure 4. We do this by making
the assignment of vectors to the points L1, . . . , L8 according to figure 8.
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Row Block Subset of V
R1 {1, 2, 3, 4} {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}
R2 {1, 2, 6, 8} {(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1)}
R3 {3, 4, 5, 7} {(0, 1, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1)}
R4 {1, 3, 5, 8} {(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)}
R5 {2, 3, 7, 8} {(1, 0, 0), (0, 1, 0), (1, 1, 1), (0, 0, 1)}
R6 {2, 4, 6, 7} {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)}
R7 {1, 4, 5, 6} {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}
R8 {5, 6, 7, 8} {(0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 1)}

Figure 9. The blocks of the structure

With this identification of the Li as vectors in V , we have the following
way to identify the blocks of our structure. For simplicity of presentation,
we write i in place of Li in figure 9.

We can see from the preceding table that R1, R2, R4, R7 are precisely the
4 planes through the origin in V that do not contain the vector (1, 1, 1)
and that R3 = R2 + (1, 1, 1), R5 = R7 + (1, 1, 1), R6 = R4 + (1, 1, 1), R8 =
R1 + (1, 1, 1) are their translates.

Now we show that the semigroup S defined in the previous subsection
also has a natural interpretation with respect to this geometric structure.
Let V be a vector space over an arbitrary field. An affine partial function
on V is a partial function fA,w : V → V of the form vf = vA + w,where
A : V → V is a partial linear transformation, that is a linear transformation
whose domain is an affine subspace of V and range an affine subspace of
V and w ∈ V . The collection of all affine partial functions is a monoid
Aff(V ). If we identify fA,w with the pair (A,w), then multiplication in
Aff(V ) takes the form (A,w)(A′, w′) = (AA′, wA′ + w′) so that Aff(V ) is
a semidirect product of the monoid of partial linear transformations on V
with the additive group on V .

We claim that the idempotents e and k defined in the previous section in
defining our semigroup S act as affine functions on F 3

2 using our translation

of our structure in this section. Indeed, let A =





1 0 1
0 1 0
0 0 0



 considered as

a matrix over F2. Then it is easily checked that for 1 ≤ i ≤ 8, ie = j if
and only if viA = vj where vi is the vector corresponding to Li in the table

above and that if B =





0 1 0
0 1 0
1 1 1



 and w = (1, 1, 0), then for 1 ≤ i ≤ 8,

ik = j if and only if viB+w = vj. Thus the completely simple subsemigroup
T of our semigroup S is faithfully represented by affine functions over our
geometric structure.
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Furthermore, each element of T has the following property with respect to
this structure: the inverse image of each plane in the structure is also in the
structure. For example, R1e

−1 = R4, R2e
−1 = R2, R3e

−1 = R3, R4e
−1 =

R4, R5e
−1 = R3, R6e

−1 = R6, R7e
−1 = R2, R8e

−1 = R6.
Each element (Ri, Lj) is also represented as an affine partial function,

namely the partial function whose domain is Ri and sends all points in its
domain to Lj. We can represent this as an affine partial function by taking
A to be the 0 linear transformation restricted to Ri and w to be Lj. Clearly,
the inverse image of a block R under this function is either Ri if Lj ∈ R and
the empty set otherwise.

Notice also, that for every element of S the closure of blocks under in-
verse image encodes left multiplication of e in the biordered set E(S). For
example, e(R1, L1) = (R1e

−1, L1) = (R4, L1), (R1, L1)(R3, L1) = 0, etc.
Thus, there is an analogue of the action of the partial functions on our

structure to continuous functions on a topological space. If we consider the
blocks of our structure to be “open”, then our functions preserve open sets
under inverse image. The notion of continuous partial functions on combi-
natorial structures and its relationship to the semigroup theoretic notion of
translational hull [2] has been explored in [3, 4, 5]. We see here that there is
a close connection between building biordered sets with a specific connected
component and the continuous partial functions on the corresponding 0-
simple semigroup. We will explore this connection in future work.

6. Summary and future directions

We have shown how to represent the maximal subgroups of the free (reg-
ular) idempotent generated semigroup on a regular biordered set by a 2-
complex derived from Nambooripad’s [17] work. By applying the Bass-Serre
techniques of [10], we are directly lead to the graph defined by Graham and
Houghton for finite 0-simple semigroups [9, 13]. We put a structure of 2-
complex on this graph and use that to construct an example of a finite
regular biordered set that has a maximal subgroup that is isomorphic to the
free abelian group of rank 2. This is the first example of a non-free group
that appears in a free idempotent generated semigroup.

The biordered set arises from a certain combinatorial structure defined on
a 3 dimensional vector space over the field of order 2. This suggests looking
for further examples by either varying the field and looking at analogous
structures over 3 dimensional spaces or by looking at higher dimensional
analogues of the structure we have defined.

In related work we have proved, using completely different techniques,
that if F is any field, and E3(F ) is the biordered set of the monoid of 3× 3
matrices over F , then the free idempotent generated semigroup over E3(F )
has a maximal subgroup isomorphic to the multiplicative subgroup of F . In
particular, finite cyclic groups of order pn − 1, p a prime number appear as
maximal subgroups of free idempotent generated semigroups.
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This last example motivates an intended application of this work. We
would like to apply Nambooripad’s powerful theory of inductive groupoids
[17] to study reductive linear algebraic monoids [22]. This very important
class of regular monoids and their finite analogues have been intensively
studied over the last 25 years. A basic example is the monoid of all matrices
over a field.

The above discussion begs the question of describing the class of groups
that are maximal subgroup of IG(E) or RIG(E) for a biordered set E. This
seems to be a very difficult question at this time.
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